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1 Preface

1.1 The Purpose of these Notes

These notes were written as a supplement for an introductory course
MAT101: A Survey of Mathematical Reasoning taught by the author in Fall
2022 at Suffolk County Community College. The bulk of the content was
completed in July 2022. Insignificant updates have been made since that
time.

1.2 What is Logic?

Logic is a discipline of human mind, instructing us how to build

• the vessels that give the proper form to our thoughts, and

• the conduits directing our reasoning towards the truth.

As we climb through this course, we will once in a while look back and re-
examine the meaning of logic from progressively higher vantage points. But
those snapshots, reflective of the historical development of the subject and
distorted by its inevitable ideosyncrasies, will neither give us the ultimate
definition, nor reveal the full scope of logic. Instead, each subsequent defi-
nition will gave us only an approximation of the true essence of the subject,
their transient and incomplete nature calling upon us to further the the field
of logic in the quest for its ultimate meaning.

Logic is both a theoretical and an experimental field, and the tension —
sometimes catastrophic — between its foundations and applications is the
main force shaping its continuing development. Let the general purpuse of
finding the truth guide us in our studies, even if we inavitably fall short of
that lofty goal.

1.3 What to Expect from this Course

The dualism of logic-as-an-object of study on the one hand and logic-
as-a-tool for studying other things on the other, should be a part of any
introduction into the subject. Indeed, no tool can be effectively used with-
out at least some basic understanding of its mechanism, and no theory is
meaningful until it is put to practice. Thus these notes will have two —
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intertwined but distinct — narratives: an instruction on how to build those
vessels and conduits for human thoughts, and a demonstration on how the
tools we build can facilitate our thinking. For clarity, we will use the word
meta-logic for the narrative describing logic-as-an-object of study.

Since it is logic itself that gives us the ability to be precise, the meta-
logical part of a basic introduction into the subject must inadvertently be
informal, intuitive and — as mathematicians often put it — “hand-waiving”.
Indeed, without becoming circular, such an introduction cannot employ the
tools that would allow it to be rigorous. Thus, don’t expect anything else
from the these notes: when introducing logical concepts, we will aim at
achieving intuitive clarity without the pretense of rigor and precision1. How-
ever, as we progress through the material, we will pick the tools along the
way that will enable us to be more and more exacting in our discourse.

Finally, in a more advanced course, you will be able to apply the tools we
develop here to the study of logic itself, making the study-of-logic-with-logic
look like the ouroboros 2 symbol:

Figure 1: The Ouroboros
1This introduction should be taken in that spirit as well.
2from Ancient Greek oὐρoβόρoς, combining oὐρά [oura] meaning ’tail’ and βoρός [boros]

— ’eating’
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1.4 The Phenomenon of Self-reference

The ouroboros captures the idea of self-reference which is perhaps the
most intriguing aspect of logic. No story of logic is complete without this
topic.

From the first appearance of Liar’s Paradox attributed to Epimenides3

to the modern work on the foundations of mathematics, self-reference and
the resulting paradoxes feed the drama of logical development4 and make
the discipline of logic as interesting as it is. Without the paradoxes causing
periodic catastrophes and reshaping of the whole discipline, logic would be
perhaps a bit more deep, but no more exciting than a washing machine
owner’s manual. More importantly, the world we live in would be much
more regular and mechanical, and thus less humane. The paradoxes of logic
capture the aspect of our existence that elevates the imperfect human mind
to the level on which the universe itself operates.

Sadly, what we will have time for in this course is only the introductory
basic part of logic that lays the foundations for the study of self-reference
without following through on this promise. Thus it can be properly termed
“the boring part” of the subject. I hope the glimpses and the shadows of the
ouroboros you see — if only superficially — through these notes will inspire
you to go further in your studies.

3
᾿Επιµενίδης [Epimenides of Crete] was a semi-mythical Greek philosopher-poet who

supposedly lived sometime around 7th or 6th century BC. The paradox stems from a
poem Κρητικά [Cretica], attributed to him and quoted twice in the New Testament (Acts
17:28 and Titus 1:12-13). The relevant verse, “Cretans, always liars,. . . ” appears in the
Epistle to Titus, chapter 1, verse 12. There is no evidence Epimenides himself considered
the verse paradoxical. The paradox can be rephrased as follows. Epimenides says: “All
Cretans always lie”. But Epimenides is a Cretan himself. Is his statement true or false?

4More on that in the section on the history of this discipline.
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2 Propositional Logic

2.1 Ontology: Statements and Logical Gates

Ontology describes the notions used in a field of study5. The first notion
of logic which is used to structure its field of study is that of a statement.

Definition (of statement): A statement expresses the general idea of such
everyday concepts as fact, judgment, sentence, claim etc. The most impor-
tant property of a statement is its truth or falsehood, referred to as its
truth value. When determining whether something is or is not a state-
ment, we are not concerned with deciding its truth value. We just need to
make sure that the truth value is a property that makes sense when applied
to the thing we are considering. ♢

Example (statement): This dog is big. ♢

Example (non-statements):
Is that dog big?
green
Give me that dog! ♢

The above examples also show one important aspect of statements: state-
ments acquire their full meaning from their specific context. We will pay
close attention to the subject of context later.

Statements can be constructed from other statements in various ways.

Example (combining statements): Two statements, “This dog is big.” and
“You should take it outside.” can be combined into one: “This dog is big and
you should take it outside.” ♢

Definition (of logical gate): A logical gate is a particular way of con-
structing a new statement from one or more other statements, independent
from the specifics of the statements being used in the construction. Each
gate is defined by the truth value of the resulting statement for each possible

5from Ancient Greek ὄντoς [óntos] — “being” and λόγoς [lógos] – a description; in other
words, a description of things that exist.
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combination of truth values of the original statements. It is convenient to
represent that information in the form of so called “truth tables”. ♢

For instance, the “combining statements” example on page 6 used the
conjunction of two statements in question.

Definition (of logical gate “conjunction”): The conjunction of two
statements A and B, denoted A ∧ B, is a statement whose truth value is
defined by the following table:

A B A ∧B
T T T
T F F
F T F
F F F

In natural language, conjunction is usually expressed by the word “and”. For
example, “this dog is big and friendly” is logically the same as

“(this dog is big) ∧ (this dog is friendly)”.

However, many different constructions have the same logical meaning, with
their differences expressing additional (non-logical) meaning variations, as in
“this dog is big but friendly”. ♢

Example (combining statements using specific gate): Using conjunction, we
can rewrite the “combining statements” example on page 6 as:

(This dog is big and you should take it outside.) =

(This dog is big.) ∧ (You should take it outside.)

♢

Definition (of logical gate “negation”): The negation of a statement
A, denoted ¬A is a statement whose truth value is defined by the following
table:

A ¬A
T F
F T
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♢
Since the list of combinations of truth values of two statements does not

depend on the logical gate being considered, we can combine several truth
tables into one, with that list occupying the first two columns, and each
new logical gate represented by every subsequent column. This is done in
the following table, where we define a few more standard logical gates. The
labels “Operation Title” and “Possible Meaning” refer to their rows, rather
than the first column.

Definition (of disjunction, XOR, implication, equivalence):

Operation Title: disjunction XOR implication equivalence
Possible Meaning: or either. . . or if. . . then if and only if
A B A ∨B A ⊻B A ⇒ B A ⇔ B
T T T F T T
T F T T F F
F T T T T F
F F F F T T

XOR stands for “exclusive OR”. ♢
Even though there are other logical gates which are even occasionally use-

ful in modeling natural language, these are the main logical gates of propo-
sitional logic.

HOMEWORK: How many logical gates combining two state-
ments are there in the total?

Importantly, negation, conjunction and disjunction are sufficient for con-
structing all other logical gates, no matter the number of their constituent
statements. We will study that question later.

2.1.1 Special Role of Implication — What is Logic?

Accepting certain statements as true may require acceptance of certain
other statements as true, purely because of the structure of those statements.
This idea6 — the idea of formal inference — is the very foundation of logic

6Explicitly stated already by Aristotle, and possibly understood even earlier.
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itself. Implication is the formal model of the inference relation between
statements. Thus, the concept of implication is the center of logic.

Example (inference): Believing that a black cat is hidden in a particular
box necessitates believing that a cat (of any color) is in the box. Using
implication, we can express this idea as

(a black cat is in the box) ⇒ (a cat is in the box).

♢

Definition (of argument): An argument is a statement which has the form
of an implication. In an argument A ⇒ B, statement A can be called the
assumption, the hypothesis, the premise, or the antecedent of the argu-
ment; statement B can be called the consequence, the conclusion, or the
consequent of the argument. ♢

Definition (of validity): An argument is valid if and only if it is a true
statement, as prescribed by the truth table that defines implication (see page
8).

As we can read from the truth table of implication on page 8, the state-
ment A implies the statement B if and only if whenever A is true, the B
must be true as well. (To put it differently, it must be impossible for A to
be true and for B to be false.) Thus, an argument is valid if and only if in
any circumstances when the assumption A is true, the conclusion B is true
as well. ♢

Now we can formulate the notion of logic in more precise terms. Logic is
the technology for

• giving our thoughts the right structural form;

• determining their truth value when it can be done based on their struc-
ture alone; and

• using the structure of our hypotheses7 for making valid inferences.
7i.e. the statements that we are willing to accept, if only provisionally
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This falls short of our ultimate goal — that of finding the truth. Logic —
at least in its present form — guarantees neither the truth nor the meaning-
fulness of what it offers. It is merely the grammar of rational thinking that
gives our thoughts the structure making them unambiguous and precise, and
provides the formal rules of inference. It is the meter and rhyme of rational
thinking, enabling it to express the poetry of truth. Logic by itself cannot
give us the truth, it can merely help us formulate our beliefs and explicate
the truth already contained in our assumptions. We need to venture outside
of logic to come up with reasonable assumptions. Logical conclusions are
formal and relative — relative to the truth of our assumptions. Absolute
truth of the conclusion is the focus of the following concept:

Definition (of soundness): An argument is sound if and only if it is valid
and starts with a true hypothesis. ♢

Definition (of modus ponens): Modus ponens (Latin for “method of affirm-
ing”) is a fundamental principle of logic affirming the truth of the conclusion
of a sound argument:



(
A ⇒ C

)
∧ A


⇒ C.

If the assumption A implies the conclusion C (meaning that the argument
A ⇒ C is valid) and the assumption A is true (meaning, together with the
previous, that the argument is sound), then the conclusion C is true. ♢

Before we move on to the next section, let’s introduce some additional
terminology related to implications.

Definition (of converse, inverse, counter-positive): Suppose we have
a statement in the form of an implication

A ⇒ B

where A and B are some other statements. Then

• statement B ⇒ A is called “the converse” of the original;
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• statement (¬A) ⇒ (¬B) is called “the inverse” of the original;

• statement (¬B) ⇒ (¬A) is called “the counter-positive” of the orig-
inal.

♢

HOMEWORK: Use the truth tables on pages 7, 8 (that define
negation, implication and equivalence) to verify the equivalence of

• the original implication and its counter-positive;

• the converse and the inverse of an implication.

One additional piece of intuition related to implication is expressed in
terms of relative “strength” of statements. When an implication A ⇒ B
holds, one may refer to A as the stronger, and to B — as the weaker
of the two. Similarly, finding a consequence B for a given statement A is
called weakening the A. Likewise, finding an assumption A from which the
statement B follows is called strenthening the B.

2.2 Apologia: Truth Tables

Apologia is the formal defense of certain position, conduct or actor8. In
these notes, we will use this term to describe how arguments are validated in
a particular logical theory.

Propositional logic gives us the tools for only the most basic analysis of
reasoning. Such analysis can only give the lowest resolution picture, based
on breaking down real life narrative into statements and logical gates. The
smallest units in this breakdown process, besides the gates, are the so-called
atomic statements, namely those that cannot be represented as combinations
of smaller statements9. Apologia of propositional logic will be based on

8from the Greek word απoλoγία [apologia] coming from από [apo] — “of”, and λόγoς
[logos] — “speech”, literally “about the”. However, in homage to Ἀπoλoγία Σωκράτoυς
[Apoloǵıa Sokratous] written by Plato, it is used as meaning “the defence of”.

9Even though in the later sections, those “atomic” statements will be — sometimes —
broken further into smaller pieces of information, those pieces will not be statements.
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propositional analysis, namely breaking an argument into atomic statements
and gates and applying the truth tables to the resulting implication formula.

Example (valid argument): This dog is always happy after a meal. However,
it seems to be troubled and restless. Probably it is hungry. ♢

Example (invalid argument): This dog is always happy after a meal. If you
don’t feed it, it will be very angry. ♢

What makes one argument valid and another one invalid? How can we
effectively decide these questions in general? This is the subject of this
section.

The first step in determining validity of an argument is its propositional
analysis, namely breaking the whole of the argument as a statement into
smaller statements combined together by logical gates.

In natural communications, we rely on the context when omitting im-
plicit assumptions, and use the flexibility of our language to convey shades
of meaning and to avoid rigid repetitiveness. These features make our con-
versations more succinct and lively, but obscure the structure. To “correct”
these shortcomings, we need to make all omitted assumptions explicit and
adjust the wording — without change in meaning — in order to reveal the
argument’s ultimate structure. Some authors even introduce additional ter-
minology to stress the latter point, using the term proposition to describe
the underlying meaning that may be expressed in various ways by different
statements.

Take the first example, “This dog is always happy after a meal. However,
it seems to be troubled and restless. Probably it is hungry.” Consider the
whole argument as one statement. First, we can break that statement along
the boundaries of the sentences, explicating the logical gates and the grouping
that holds it together. At the cost of adding some redundancy, we will also
make the individual sentences a bit more self-sufficient, so that one sentence
does not depend on the context introduced by another. Some (non-logical)
shades of meaning will be lost in this analysis.
(

(this dog is always happy after a meal)∧

(this dog is troubled and restless)
)

⇒ (this dog is hungry).
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If we replace different statements with different letters, we get

(A ∧B) ⇒ C,

which cannot possibly be a valid argument. Indeed, take A and B true and
C false. This choice of the truth values will make the whole implication false
demonstrating that this argument is invalid.

On the other hand, it should be intuitively clear that what we had before
this replacement of statements with letters was a valid argument. How can
we reconcile these two conclusions?

The problem here is the insufficient depth of our analysis. To demonstrate
validity of this argument, we need to break it down further to reveal more of
its propositional structure:



(

(the dog has eaten) ⇒ (the dog is happy)
)
∧

(
¬ (the dog is happy)

)

⇒

(
¬ (the dog has eaten)

)

This looks pretty cumbersome. To make it a bit more readable, a different
notation10 is usually favored in situations such as this:

(the dog has eaten) ⇒ (the dog is happy)
¬ (the dog is happy)
¬ (the dog has eaten)

In the above, the horizontal line stands for the main implication of the
argument and can be read as “therefore”. The assumption of the argument
is above the horizontal line, and the conclusion is below that line. The
assumption is broken — as much as possible — into a conjunction of smaller
statements, written individually one per line. These conjunctions are implicit
in this form of writing.

To focus on the statement-gate structure of this argument, substitute the
atomic statement “the dog has eaten” with E, and “the dog is happy” with
H. Then it becomes:

10in these notes, we will call it “the Gentzen’s notation”
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E ⇒ H
¬H
¬E

or, going back to the original form (which is less cumbersome now):


(
E ⇒ H

)
∧
(
¬H
)

⇒

(
¬E
)
,

Consider the truth table of this formula. To complete it, we used the
truth tables around page 8 defining implication, conjunction and negation:

E H



(
E ⇒ H

)
∧
(
¬H
)

⇒

(
¬E
)

T T T
T F T
F T T
F F T

Its last column shows that the argument in question is true for every
possible combination of the truth values of the ingredient statements E and
H. This is exactly the indicator we have been looking for.

Definition (of tautology): A propositional formula is called a tautology
if and only if it is true for any combination of truth values of its ingredient
statements. ♢

Theorem (Valid Propositional Argument is a Tautology). An argu-
ment of propositional logic is valid if and only if that argument is a tautology.
♢
Proof. 11 For an argument, being a tautology means having true conclusion
whenever the assumptions of the argument are true. This is exactly the
definition of validity of an argument.

11Right now, we use the word “proof” informally, as a substitute for “a (hopefully)
convincing explanation”. The concept of proof will be the center of our attention later,
when we will give it a precise definition.
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The argument whose validity we verified in this example is called modus
tollens, which is Latin for “method of removing” — meaning removing the
assumption whenever it leads to a false conclusion.

HOMEWORK: Verify, using the truth tables of implication and
conjunction, that the logical formula expressing modus ponens (on
page 10) is a tautology. Thus modus ponens itself is a valid argu-
ment.

***

Let’s analyze the second argument “This dog is always happy after a
meal. If you don’t feed it, it will be very angry.” — the same way we did
the first one. Explicating the logical gates and rephrasing some parts of
the original argument to match the instances of the same atomic statement
across different sentences, we get:

(
(the dog has eaten) ⇒ (the dog is happy)

)
⇒



(
¬ (the dog has eaten)

)
⇒
(
¬ (the dog is happy)

)

 ,

or, in a more concise form:

(the dog has eaten) ⇒ (the dog is happy)
¬ (the dog has eaten) ⇒ ¬ (the dog is happy)

Using the same abbreviations as before, the statement-gate structure of
this argument can be written as:

E ⇒ H
(¬E) ⇒ (¬H)
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or, in the formula form:

(
E ⇒ H

)
⇒



(
¬E
)

⇒
(
¬H
)

 .

The truth table of this formula can be computed like before:

E H

(
E ⇒ H

)
⇒



(
¬E
)

⇒
(
¬H
)



T T T
T F T
F T F
F F T

The F in the last column signals that the argument is invalid. It cor-
responds to the case when E is false and H is true. In that case, the
assumption of the argument, namely E ⇒ H, is true, but the conclusion(
¬E
)

⇒
(
¬H
)

is false.

Definition (of counterexample): For any given argument, a situation mak-
ing its assumptions true and conclusion false is called a counterexample to
that argument. For instance, the combination of false E and true H is a
counterexample to the argument we are considering. ♢

A counterexample to an argument shows that the conclusion of that ar-
gument is not supported by the assumption. Thus, an argument is invalid if
and only if it has at least one counterexample.

Note that an invalid argument can full well have a true conclusion. Va-
lidity of an argument has nothing to do with the truth or falsehood of that
argument’s assumption or conclusion. It merely concerns itself with whether
or not the conclusion is supported by the assumption.

Furthermore, within logical discourse, we are not concerned whether our
counterexamples are feasible in the real world. Any combination of truth
values of the constituent atomic statements can serve as a (counter)example.

16



If the counterexample is indeed impossible in the real world, it means that
our assumptions don’t capture full relevant details of the situation we want to
model in our argument. When you encounter an intuitively correct argument
with true conclusion that is formally incorrect, most likely there is a problem
with the assumptions not providing an accurate model of the world, or the
analysis of the argument not going deep enough to reveal the structure that
makes the argument valid.

2.3 Digression: Languages, Grammars and the Backus
Notation

Speaking about any subject requires the use of a language capable of
carrying the intended meaning. For this reason, the language is as important
to study of logic as logical inference itself. However, in this section we merely
scratch the surface of the language theory, illustrating some of its basic ideas
by applications to Propositional Logic. For a more thorough introduction,
lee section FIXME.

Language carries meaning in its form, and the form of a language is
described by the grammar. A language is defined by its alphabet and ex-
pressions.

Definition (of alphabet and letters; language and expressions): Sup-
pose A is a finite set. Denote as AN the set of all finite sequences of the ele-
ments of A. Example: if we take A = {0, 1}, then 10010001000101100110010011001001111
is an example of such a sequence. By definition, a language L over an
alphabet A is a particular subset of AN. The individual elements of A are
called letters of the alphabet A, and the individual elements of L are called
expressions of the language L . Thus, the letters of an alphabet are the
atomic building blocks of the expressions in the language over that alphabet.
expressions ♢

Definition (of grammar): A grammar of a language L is a set of rules
permitting to decide effectively, for any finite sequence of letters, whether or
not that sequence is an expression of the language. ♢

Not every language can be described by a grammar. However, all the
languages of the immediate interest to us will not only be describable by a
grammar, but will permit a description of a very particular kind, namely as
a finite list of production rules. A production rule is a recepie for a replacing
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one string of symbols with another.

Definition (of symbols): Symbols of a grammar are the letters of an ex-
tended alphabet, made of the original alphabet of the language in question
(those are called the terminal symbols) and additional letters that are used
by the grammar to conceptualize certain types of terminal symbol sequences
that act as building blocks of the language’s expressions. ♢

Example (Backus notation for describing comma-separated lists): Suppose
we want to give a precise description for “a list of one or more digits, sepa-
rated by commas followed by space”12. We can describe the grammar of the
language of such lists using what is called Backus Notation13. This notation
defines the grammar of a language incrementally, by listing the production
rules for its symbols:

<list> : :=: :=: := <digit> ||| <digit> , <list>

<digit> : :=: :=: := 0 ||| 1 ||| 2 ||| 3 ||| 4 ||| 5 ||| 6 ||| 7 ||| 8 ||| 9

where

• the symbol “::=::=::=” is a part of the Backus notation, and means “can be
replaced with”. Each line with this symbol defines a new production
rule.

• the symbol “|||”, also a part of the Backus notation, means “or”. In
principle, we could go without it, replacing the above with:

<list> : :=: :=: := <digit>
<list> : :=: :=: := <digit> , <list>
<digit> : :=: :=: := 0
<digit> : :=: :=: := 1
<digit> : :=: :=: := 2
<digit> : :=: :=: := 3

12One may ask why would we need a separate notation for what we just described using
natural language. It turns out that in a more complicated situation — for example, when
specifying a programming language — the notation we are about to introduce would be
much more precise and succinct, which makes it worth the effort.

13It is often called Backus-Naur Form or Backus Normal Form. Both of these terms are
incorrect and misleading, so we settle for Backus Notation instead of the more standard
terminology.
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<digit> : :=: :=: := 4
<digit> : :=: :=: := 5
<digit> : :=: :=: := 6
<digit> : :=: :=: := 7
<digit> : :=: :=: := 8
<digit> : :=: :=: := 9

• the expressions between angle brackets, namely “<digit>” and “<list>”,
are called the non-terminal symbols. Those pertain to a particular
grammar of a language, so that different grammars with different non-
terminals may describe the same language. Non-terminals can help
structure the grammar by classifying fragments of the expressions.

• the non-terminal symbol “<list>” is called the start symbol of the
grammar. It gives the name to well-formed expressions of the language
in question. Every grammar should have exactly one start symbol.

• the expressions without angle brackets, namely the ten digits, the
comma and the space, are called the terminal symbols of the lan-
guage. Their combinations make up the expressions of the language.

♢

In all the grammars we will consider in these notes, the space symbol will
not convey any meaning, permitting us to add it liberally to our expressions
just to make them more readable or to stress something in particular. From
the formal point of view, all spaces in such situations should be ignored as if
they were not there.

How does a grammar help us decide if a sequence of letters constitutes an
expression of the language defined by that grammar? The following definition
introduces the concept answering this question.

Definition (of parse tree): When a language is defined by a grammar,
each expression of that language must come from a tree. The root of that
tree must be the start symbol of the grammar, each node must correspond
to a particular production rule, and each leaf must be a terminal symbol. All
leafs taken together should give the expression itself. Such a tree is called
the parse tree of the expression. ♢
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Example (parse tree):
For example, the list “1, 5, 7” has the parse tree

<list> : :=: :=: :=
<digit> : :=: :=: :=

"1"
" , "
" "
<list> : :=: :=: :=

<digit> : :=: :=: :=
"5"

" ,"
" "
<list> : :=: :=: :=

<digit> : :=: :=: :=
"7"

♢

HOMEWORK: Use the Backus notation to specify the grammar
for all possible (signed or unsigned) decimals.

The parse tree of an expression gives the precise meaning to that expres-
sion. Thus each comprehension task involves parsing stage.

2.4 Disjunctive Normal Form

It turns out that any logical gate (no matter how many statements it com-
bines) can be expressed as a disjunction of elementary conjunctions. More
precisely, disjunctive normal form is defined by the following Backus nota-
tion.

Definition (of disjunctive normal form):

<DNF> ::=: :=: := <elementary_conjunction>
||| <elementary_conjunction> ∨ <DNF>

<elementary_conjunction> : :=: :=: :=

<term> |||
(

<term> ∧ <elementary_conjunction>
)
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<term> : :=: :=: := <variable> ||| ( ¬ <variable> )

<variable> : :=: :=: := A ||| B ||| C ||| D ||| . . .

♢

(Notice also that we started to use spaces for readability.)

HOMEWORK: What are the start symbol, the terminal sym-
bols, the non-terminal symbols of this grammar?

Example (disjunctive normal form):
(
A ∧B

)
∨
(

(¬A) ∧ (¬B)

)

is a disjunctive normal form. ♢

HOMEWORK: Construct the parse tree of the disjunctive nor-
mal form for the above DNF.

Given the truth table of a logical gate, it is extremely easy to determine
its DNF. One just needs to write a term for each row with T output listing all
inputs equal to T as themselves, and all inputs equal to F as their negations.

Example (DNF of implication): Take the implication

A B A ⇒ B
T T T
T F F
F T T
F F T

The first line gives the elementary conjunction A∧B; the second line results in
F and thus does not give any elementary conjunction; the third gives (¬A)∧
B, and the fourth results in (¬A) ∧ (¬B). Combining all these elementary
conjunctions together, we get the disjunctive normal form of implication:
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(
A ⇒ B

)

⇔ ((
A ∧B

)
∨
(

(¬A) ∧B
)
∨
(

(¬A) ∧ (¬B)
))

.

♢

2.5 Standard Identities of Propositional Logic

There are many identities connecting different propositional formulas,
similar in kind to the familiar associativity, commutativity and other identi-
ties of arithmetic.

Some of these identities are discussed in this section.

2.5.1 Identities with Implication

The implication A ⇒ C is equivalent to stating that either the assumption
A is false — and we are not responsible for any conclusions we make — or
the conclusion C must be true:

(
A ⇒ C

)

⇔ (
(¬A) ∨ C

)
.

Also worth mentioning is the fact that the equivalence of two statements
means that each of these statements implies the other:

(
A ⇔ B

)

⇔ (
(A ⇒ B) ∧ (B ⇒ A)

)
.

HOMEWORK: Verify these two equivalences using truth tables.
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2.5.2 Arithmetic Properties of Conjunction and Disjunction

There is a lot of similarity between addition and multiplication on one
hand, and conjunction and disjunction — on the other. Conjunction and
disjunction share the properties of commutativity and associativity with the
two arithmetic operations.

HOMEWORK: Formulate and verify using the truth tables the
properties of commutativity and associativity for disjunction and
conjunction.

A more subtle point is the existence of a neutral element. If we consider
logical gates as operations on truth values of the constituent statements,
rather than the statements themselves, then conjunction and disjunction
share the property of a neutral element — in this case neutral truth value —
with the arithmetic operations. Recall, that a neutral element n of a binary
operation • is the element with the property n • x = x • n = x for any x
that can be used with that operation. For example, the neutral element of
addition is zero, because 0 + x = x + 0 = x for any number x.

HOMEWORK: Which one of the two truth values, “true” and
“false”, is the neutral one for disjunction? Which one is neutral
element for conjunction?

2.5.3 De Morgan Laws

Theorem (negation of disjunction). Negation of a disjunction is the
conjunction of individual negations:

¬(A ∨B . . .)
⇔

(¬A) ∧ (¬B) . . . .

♢
Theorem (negation of conjunction). Negation of a conjunction is the
disjunction of individual negations:
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¬(A ∧B . . .)
⇔

(¬A) ∨ (¬B) . . . .
♢

2.5.4 Distributive Laws

Theorem (distributivity of conjunction with respect to disjunction).

A ∧ (B ∨ C . . .)
⇔

(A ∧B) ∨ (A ∧ C) . . . .
♢
Theorem (distributivity of disjunction with respect to conjunction).

A ∨ (B ∧ C . . .)
⇔

(A ∨B) ∧ (A ∨ C) . . . .
♢

HOMEWORK: Verify these four theorems using truth tables.

Example (using logical gates and identities in solving equations): Suppose
we want to solve the equation

x2 − 4

x− 2
= 2.

One possible way to go about it is to find common denominator and get
everything on one side:

x2 − 4

x− 2
= 2 ⇔ x2 − 4

x− 2
=

2x− 4

x− 2
⇔

x2 − 4 − 2x + 4

x− 2
= 0 ⇔ x2 − 2x

x− 2
= 0 ⇔

x(x− 2)

x− 2
= 0.
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Since a fraction is zero if and only if the numerator is, and the denominator
isn’t zero, the last equation is equivalent to the system:

{
x(x− 2) = 0
x− 2 ̸= 0.

This simultaneous system is just a conjunction of two statements written in a
different form. The first equation states that a product is zero. That means
that one of the factors is zero. Thus

{
x(x− 2) = 0
x− 2 ̸= 0

⇔





[
x = 0
x− 2 = 0

x− 2 ̸= 0.

where the square bracket is just another way of expressing disjunction.
Now we can use the distributivity of conjunction with respect to disjunc-

tion which then leads to the solution in one step:





[
x = 0
x− 2 = 0

x− 2 ̸= 0
⇔




{
x = 0
x− 2 ̸= 0

{
x− 2 = 0
x− 2 ̸= 0

⇔ x = 0.

♢
This example illustrates one particularly good way of presenting a solution

of an equation, inequality, or a system thereof. It is called the method of
equivalence transformations. In the context of this method, equivalence
means preservation of the the solution set as we move from one step to the
next. In our specific example, it means that the original equation

x2 − 4

x− 2
= 2

has the same solutions as the (trivial) equation x = 0, meaning that 0 is
the solution of the original equation. When using this notation, one warning
about order of operations is necessary.

In arithmetic, we usually drop parentheses when the same operation is
repeated over and over. It can be done without harm in x + y + z because
of associativity of addition, which makes grouping insignificant. We also do
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it in non-associative situations, like x÷ y ÷ z, by conventionally interpreted
repeated division by “grouping left”, i.e. as (x ÷ y) ÷ z. Less frequently
“grouping right” convention is employed, as in xyz = x(yz). However, when
dealing with the logical operations of equivalence and implication, the mean-
ing is different. When A,B,C, . . . are equations, or — more generally —
statements, the notation A ⇔ B ⇔ C . . . stands for (A ⇔ B) ∧ (B ⇔ C) . . .
which would correspond to an interlocking pattern of parentheses that is too
easy to confuse for something else to use in practice:

(A ⇔ [B) ⇔ (C] . . . .

In a sense, the implication and equivalence signs behave more like an equal
sign than an operation symbol.

2.6 History: Stoics

As we undertake our first brief incursion into the subject of history, I
want to make a general remark that will pertain to all historical sections in
these notes.

Deep ideas are like rivers. When they gather enough strength to get
noticed and recognized, their full content is rarely the result of an output from
a single source. More typically, they manifest a confluence of many streams
of thought, sometimes even contributed at the same time by independent
thinkers, and often running underground completely hidden from an observer,
only to reappear later as a crucial admixture in a bigger stream. This makes
it difficult to definitively attribute any profound theory or an idea to a single
author or a point in time. The best I hope to accomplish in my historical
notes is to mark the development of logic not by building monuments at the
symbolic but often meaningless origins, but by taking scenic shots in places
where the confluence and synergy of already full-bodied ideas created new
depth evident enough to be recognized and admired.

While the ideas of propositional logic can be traced at least as far back
as Aristotle14 and Tyrtamus Theophrastus15, they reached the level of a
developed system of reasoning in the works of another Greek philosopher,
Chrysippus of Soli.

14more about him later
15c. 371 – c. 287 BC, Greek philosopher of Peripatetic School who succeeded Aristotle

as the school’s head.
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Figure 2: Χρύσιππoς [Chrysippos] (c.279–c.204 BC)

Regarded as the leading logician during his own life time, Chrysippus
was overshadowed by Aristotle in subsequent history. Chrysippus already
had the notions of propositions, logical gates, and argument forms. Roughly
speaking, propositional logic is synonymous with “Chrysippus logic”.
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3 Syllogistic Logic

3.1 Ontology: Categories and Quantifiers

Syllogistic logic shifts the focus away from logical gates (even though it
cannot completely dispose of them), and adds the notions of category16 and
quantifier to propositional analysis of arguments. Consider the following
argument:

Example (Syllogistic Argument): All cats are mammals. All mammals are
vertebrates. Thus all cats are vertebrates. ♢

Propositional analysis yields:

(
(all cats are mammals) ∧ (all mammals are vertebrates)

)
⇒

(all cats are vertebrates) .

If we replace different statements with different letters, we will get an
invalid argument: (

C ∧M

)
⇒ V

HOMEWORK: Why is this argument invalid?

3.2 Apologia: Euler-Venn Diagrams

We have faced a similar situation earlier when a valid propositional argu-
ment appeared invalid because we did not go deep enough in its analysis (see
page 13). Here, however, deeper propositional analysis is impossible: there
are no parts in the statements (that we can break away as full statements)
matching similar parts in other statements.

16Note that the word “category” came to mean something entirely different in modern
mathematics. The mathematical concept which is the most accurate representation of a
category in the sense we use here is the concept of a set.
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Intuitively, the original argument should be valid — it is the propositional
logic that is too crude of a tool to reveal enough of the structure of this
argument to show its validity. To capture the connections between individual
statements in our analysis, we need to consider building blocks smaller than
full statements. Noticing that the words “cats”, “mammals” and “vertebrates”
are each shared by two of the three statements, we can use those words to pin
down the interlocking relation among the statements. Thinking about these
words as categories of objects in some universe, we can represent objects
as points on the plane and those categories — as the domains on that plane.
This way we can represent the argument in a graphic form:

cats

vertebrates

mammals

Figure 3: Sketch of the Categories — Too Presumptuous

But wait. . . This picture seems to imply that no mammal can be either a
vertebrate or a cat. When making an initial sketch of the categories involved
in an argument, we must avoid the possibility of imparting our picture with
any assumptions not postulated in that argument. In other words, we need
to draw the disks in common position. This idea leads to the following
definition:

Definition (of Venn diagram): An arrangement of sets on the plane that
makes any combination of membership status possible is called a Venn diagram
of those sets. ♢
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HOMEWORK: How many membership possibilities are there
for three sets? For n sets, where n ∈ N?

The following sketch is an example of a Venn diagram for the three cat-
egories considered in our argument:

cats

vertebrates

mammals

Figure 4: Venn Diagram of the Categories

We can encode the fact “all cats are mammals” by horizontally shading
the part of “cats” category lying outside of the “mammals” category:

cats

vertebrates

mammals

Figure 5: Venn Diagram with One Premise Marked

The shading indicates that no object is permitted to be in the shaded
area. Continuing with our analysis, we can encode the fact “all mammals
are vertebrates” by vertically shading the part of “mammals” category lying
outside of the “vertebrates” category:
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cats

vertebrates

mammals

Figure 6: Venn Diagram with Both Premises Marked

This analysis shows that the real picture of categories mentioned in this
particular argument looks like this:

cats

vertebrates

mammals

Figure 7: Euler Diagram of the Syllogism

This way of representing the information at hand is called an Euler
diagram. In contrast with Venn diagrams, which start with an assumption-
free depiction of the categories, Euler diagrams summarize the results of Venn
diagram analysis by showing the actual configuration of categories reflecting
the assumptions of the argument being analyzed.

The above Euler diagram demonstrates the validity of our argument by
translating the statements “everybody of this kind is of that kind” into geo-
metric statements “this category is inside of that category”.
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The conclusion that “cats” are inside “vertebrates”, is obviously supported
by the assumptions that “mammals” are inside “vertebrates” and “cats” are
inside “mammals”.

Example (syllogistic argument that depends on existential presupposition):
Since all unicorns are mammals, and all mammals are animals, we can con-
clude that some unicorns are animals. ♢

This example corresponds to the following Venn diagram, where the ver-
tical shading represents the assumption “all unicorns are mammals”, and the
horizontal one — the assumption “all mammals are animals”:

unicorns

mammals

animals

Figure 8: Venn Diagram of the Syllogism

Optionally, the same information can be represented by the Euler diagram
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unicorns

animals

mammals

Figure 9: Euler Diagram of the Syllogism

The conclusion we want to test is whether or not this arrangement of the
categories guarantees existence of at least one object that would be both a
unicorn and an animal.

This example exposes one potential ambiguity in interpreting everyday
language. In our particular case, does the phrase “all unicorns are mammals”
imply existence of unicorns?

Definition (of existential presupposition): The convention stipulating
the presumption of existence of an entity mentioned in a noun phrase within
a factual17 context, is called existential presupposition. ♢

Existential presupposition — just like any other accepted, but not explic-
itly stated assumption — may cause many errors in logical reasoning. It is
better to avoid it, agreeing to resolve this ambiguity in meaning by the re-
quirement of stating the existence explicitly. Thus, for the rest of these notes,
we adopt the convention of rejecting the existential presupposition. When we
say “all unicorns are mammals”, that will mean is really this: “all unicorns —
if they exist — are mammals”. With our convention in effect, this statement
is true when applied to the world we live in — the world with no unicorns
— since an implication with a false assumption is always true. Somewhat
paradoxically, in our world the statement “all unicorns are not mammals” is
also true.

17as opposed to counterfactual
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With existential presupposition rejected, the above picture may reflect
the situation with (some or all) of the categories being empty. Taking empty
“unicorns” category (which happens to be the case in the real world) provides
a counterexample to this argument. This counterexample shows that the
conclusion “some unicorns are animals” is not supported by the assumptions
and thus this argument is invalid.

HOMEWORK: We just realized that “some unicorns are ani-
mals” is a false conclusion from the premises of this argument. Can
we conclude that “all unicorns are animals”?

Example (syllogism): Some people understand logic, but dogs are not peo-
ple, therefore no dog understands logic. ♢

We start our analysis with a Venn diagram:

people

those who
understand

logic

dogs

Figure 10: Starting Venn Diagram of the Syllogism

The assumption “some people understand logic” can be visually expressed
by drawing an interval within the intersection of “people” and “those who un-
derstand logic”. The interval is a visual way to indicate the existence of an
object (somewhere along that interval) without making an unwarranted as-
sumption about the specific location of that object. The interval, as opposed
to a point, indicates that the object in question may be on either side of the
“dogs” boundary. 18

18Similarly, in quantum mechanics one gives up on identifying the precise location of a
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people

those who
understand

logic

dogs

Figure 11: Venn Diagram of the Syllogism with the Existence Clause Marked

The assumption “dogs are not people” can be expressed in the familiar
way, namely by shading the region where nothing is permitted to be. In this
case, the forbidden region is the intersection of “people” and “dogs”: Note
that the forbidden region removes the ambiguity expressed by the interval
notation, which can now be replaced by a single point.

people

those who
understand

logic

dogs

Figure 12: Completed Venn Diagram of the Syllogism

The same information can be expressed by the following Euler diagram:

quantum particle, settling instead for a region where the particle is likely to be found.
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people

those who
understand

logic

dogs

Figure 13: Euler Diagram of the Syllogism

Recall that we want to test the conclusion “no dog understands logic”.
This conclusion does not follow from the assumptions. Indeed, imagine a
world where in addition to the object marked by the red dot (that object
must exist because of the assumptions), there is just one more object depicted
by the yellow dot in this Euler diagram:

people

those who
understand

logic

dogs

Figure 14: Counterexample for the Syllogism

In other words, make the world with only two objects: one person who
understands logic (the red dot above), and one dog who understands logic
(the yellow dot above). In that world, the assumptions of this argument are
satisfied, but the conclusion is false. Thus this world represents a counterex-
ample for this argument, showing the argument to be invalid. (It is entirely
beside the point that such a world does not look like our real world. We are
considering the argument in its formal sense, disregarding its connection to
reality.)
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3.3 Ontology: Definition of Syllogism

We managed to get through most of Syllogistic Logic without giving pre-
cise definition of what a syllogism is. Aristotle used the term συλλoγισµός
[syllogismos] in the general sense of logical inference, to describe a valid ar-
gument with several premises. In later studies, the word “syllogism” came
to mean an argument — valid or invalid — of some very specific form. As
discovered by Leibnitz, those arguments can be resolved by Euler-Venn dia-
grams we considered earlier. However, when understood in the modern sense,
syllogisms comprise a very limited class of arguments and clearly fall short
of encompassing all rational reasoning. Perhaps this is an example when the
method — Euler-Venn diagrams — is more important then the object this
method is applied to. Even though Euler-Venn diagrams can be used for more
general arguments (like some of those with more than three categories), the
needs of rational reasoning quickly outgrow what those diagrams can handle,
necessitating the use of more potent tools of validation, like proofs.

We continue our study of syllogisms to pay homage to Aristotelian tradi-
tion, even though these ideas will be superseded by the Proof Theory. The
remainder of the section on Syllogistic Logic, notwithstanding its cultural
and historical significance, may help you better appreciate the coherence,
strength and clarity of Proof Theory when it is viewed against the backdrop
of the traditional validation techniques.
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Let’s try to define what a syllogism is by specifying its form using Backus
notation.

Definition (of syllogism): A syllogism is a categorical argument that has
the following form:

<syllogism> : :=: :=: :=
<major_premise>
<minor_premise>
_____________________
<conclusion>

<major_premise> : :=: :=: := <clause>

<minor_premise> : :=: :=: := <clause>

<conclusion> : :=: :=: := <clause>

<clause> : :=: :=: := <quanti f ier> <subject> <copula> <predicate> .

<subject> : :=: :=: := <category>

<predicate> : :=: :=: := <category>

<quanti f ier> : :=: :=: := <universal> ||| <ex i s t ent ia l>

<universal> : :=: :=: := Al l

<ex i s t ent ia l> : :=: :=: := Some

<copula> : :=: :=: := are ||| are not

<category> : :=: :=: := . . .

where the ellipsis ‘...’ in the last production rule stands for the list of the
categories specific to syllogism.
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The example starting on 34 follows this format after being slightly rephrased:

Some people are those who understand logic.
All dogs are not people.
_______________________________________________
All dogs are not those who understands logic.

provided we specify:

<category> : :=: :=: := people
||| dogs
||| those who understand l o g i c

♢
In the above definition, we used the Backus notation itself to introduce the

terms clause, major premise, minor premise, subject, and predicate.

HOMEWORK: What are the starting, non-terminal and termi-
nal symbols in this syllogism grammar?

HOMEWORK: For a given syllogism, we can infer from the
above definition that all premises are clauses. Can you think of any
other such statements that say something about any syllogism and
follow the format of a clause?

While correct in specifying the format of a syllogism, the above grammar
does not fully characterize what it means to be one. For example, it permits
the clause “some dogs are dogs” which is not something we would like to
consider as acceptable.

***
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Aside. This is a typical problem in computer science, where programming lan-
guages may be too complicated to be fully described in terms of their form alone.
Defining what constitutes a valid computer program in a given programming lan-
guage is often done in several stages. First, using Backus notation, one describes
the proper syntax of a program. Then, specification of the meaning of constituent
commands allows to formulate semantic correctness. Finally, the analysis showing
that the program does what it is designed to do demonstrates its pragmatic cor-
rectness. We could follow that method by adding semantic requirements on the top
of the syntactic definition given on the previous page. Specifically, we can require
the categories and the clauses of a syllogism to be related to each other like the
vertices and sides of a triangle. Each clause, like a side of a triangle, must contain
two different categories, which would be like the vertices of that triangle, with the
same incidence structure.

***

Definition (of syllogism’s figure): The specific arrangement of any three
categories among the clauses of a syllogism is called the figure of that syl-
logism. There are four possible figures, listed in the grammar that appears
on the next page. ♢

Since we can list all the figures as separate production rules, syllogisms are,
after all, simple enough to be completely described by their syntax alone.
But before we do that, we need to clarify our terminology a bit. In the above
definition of syllogism we called the first category of any clause the subject
of that clause, and the its second category — the predicate19 of that clause.
However, in the following Backus grammar, we will use the word “subject”
as a short hand for “the category that is the subject of the conclusion of
the syllogism in question”. Likewise, the word “predicate” will stand for “the
category that is the predicate of the conclusion of the syllogism in question”.
To avoid possible confusion between the two different uses of those terms,
pay attention to whether or not we are applying the words “subject” and
”predicate” to a particular clause or to the whole syllogism.

The third category of a syllogism, which occurs in each premise but is
absent from the conclusion, is referred to as the “middle” in the grammar
below.

19Later, the word “predicate” will be used in a more general sense.
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<syllogism> : :=: :=: := <FIGURE_1> ||| <FIGURE_2> ||| <FIGURE_3> ||| <FIGURE_4>

<FIGURE_1> : :=: :=: := <quanti f ier> <middle> <copula> <predicate> .
<quanti f ier> <subject> <copula> <middle> .
________________________________________________
<quanti f ier> <subject> <copula> <predicate> .

<FIGURE_2> : :=: :=: := <quanti f ier> <predicate> <copula> <middle> .
<quanti f ier> <subject> <copula> <middle> .
________________________________________________
<quanti f ier> <subject> <copula> <predicate> .

<FIGURE_3> : :=: :=: := <quanti f ier> <middle> <copula> <predicate> .
<quanti f ier> <middle> <copula> <subject> .
________________________________________________
<quanti f ier> <subject> <copula> <predicate> .

<FIGURE_4> : :=: :=: := <quanti f ier> <predicate> <copula> <middle> .
<quanti f ier> <middle> <copula> <subject> .
________________________________________________
<quanti f ier> <subject> <copula> <predicate> .

<quanti f ier> : :=: :=: := <universal> ||| <ex i s t ent ia l>
<universal> : :=: :=: := Al l
<ex i s t ent ia l> : :=: :=: := Some

<copula> : :=: :=: := <aff irmative> ||| <negative>
<aff i rmative> : :=: :=: := are
<negative> : :=: :=: := are not

<subject> : :=: :=: := . . .
<middle> : :=: :=: := . . .
<predicate> : :=: :=: := . . .
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Each of the last three production rules needs a specific (and distinct) category
in place of its ellipsis “...”. Thus, interpreting the example that was introduced
on 34:

Some people are those who understand logic.
All dogs are not people.
_______________________________________________
All dogs are not those who understands logic.

as a Figure 1 syllogism, we would specify:

<subject> : :=: :=: := dogs
<middle> : :=: :=: := people
<predicate> : :=: :=: := those who understand l o g i c

Also note that in the traditional syllogystics,

• the “existential quantifier” was instead called the “particular quantifier”;

• the form “no dog understands logic” was used instead of “all dogs do
not understand logic” which we adopted to make our grammar more
regular;

• existential presupposition was in effect, so that “all dogs are not people”
was understood to mean “there exists at least one dog and those dogs
that exist are not people” 20.

HOMEWORK: Why is the number of possible figures of a syl-
logism exactly four?

Definition (of syllogism): Syllogism is a logical argument, which is con-
structed according to the grammar specified on the previous page. In de-
termining whether or not an argument is a syllogism, we disregard the issue

20sometimes existential presupposition is called the “existential import to
universal quantifier” in this context
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whether or not that argument is logically valid. The only question that needs
to be addressed when classifying an argument as a syllogism is its confor-
mance with the above grammar rules. ♢

Definition (of mood of a clause): The specific combination of a quantifier
and a copula is called the mood of a clause in a syllogism. There are four
possible moods. ♢

HOMEWORK: Why is the number of possible moods of a syl-
logism clause exactly four?

Definition (of syllogism class): All syllogisms that are the same, except
for possibly their categories, form a syllogism class. For example, the
syllogism we considered on page 28 belongs to the same class as “all cats
are pets, all pets like to play; therefore all cats like to play”. Syllogisms
that belong to the same class are represented by the same Venn and Euler
diagrams. ♢

HOMEWORK: How many syllogism classes are there in total?
(Hint: how many moods are there per clause? per syllogism?)

3.4 Apologia: Reduction; Mnemonics

Traditional way of validating syllogisms was based not on Euler-Venn
diagrams but on the technique called reduction. Figure 1 was called the
“perfect figure”, and the syllogisms classes in that figure were called “per-
fect syllogisms”.21 Validity (or lack thereof) of perfect syllogisms was taken
as self-evident. Reduction was a step-by-step process connecting22 the im-
perfect syllogism in question to the corresponding perfect syllogism. The
validity of the syllogism under consideration would rest on the validity of

21Here and elsewhere we will often say “syllogism” when in fact referring to a syllogism
class.

22more on the nature of that connection later
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the corresponding perfect syllogism and on the soundness of each step. This
incremental nature of validation by reduction forshadows the idea of a proof
which we will explore in depth later in these notes.

This validation technique was ingrained into an eleborate mnemonic23

system developed by medieval logicians. We describe that system (and the
technique of reduction) in this section.

3.4.1 Encoding the Mood of a Clause

Vowels “a”, “i”, “e” and “o” encoded the mood of a clause:

• the word “affirmo” (Latin for “affirm”) giving the vowels for the two
affirmative moods:

– a: <universal> <affirmative>

– i: <existential> <affirmative>

• and the word “nego” (Latin for “negate”) giving the vowels for the two
negative moods:

– e: <universal> <negative>

– o: <existential> <negative>

3.4.2 Encoding the Syllogism Class

Each class of valid24 syllogisms was denoted by a single word with three
vowels:

FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4
MP, SM PM, SM MP, MS PM, MS
Barbara Cesare Datisi Calemes
Celarent Camestres Disamis Dimatis
Darii Festino Ferison Fresison
Ferio Baroco Bocardo Calemos
Barbari Cesaro Felapton Fesapo
Celaront Camestros Darapti Bamalip

23i.e. aiding memory retention of certain information
24in the sense of logical validity, rather than conformity with the grammar on page 41

defining syllogisms
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Those vowels encoded the mood of the major premise, minor premise, and
the conclusion respectively, as noted on page 44. For instance, the word
“Barbara”, having three vowels “a”, described the class of syllogisms with
three universal affirmative clauses, like the one introduced on page 28.

In the above table, the syllogisms in italic are valid only with the exis-
tential presupposition. Those in non-bold italic admit a stronger conclusion.
Each column corresponds to one figure and groups together the syllogisms
with the same distribution of the categories among their clauses. Under the
figure designation in the column headers, only the categories for the major
and the minor premise are listed (since, by definition, the categories of the
conclusion are SP for all the figures). This information about the figures,
which comes from the syllogism grammar on page 41, is encoded in the phrase

Sub pre prima
bis pre secunda

tertia bis sub

recalling 25 that the middle category is

1. the subject of the major premise, and the predicate of the minor
premise in the first (“prima”) figure;

2. the predicate of both premises in the second (”secunda”) figure; and

3. the subject of both premises in the third (“tertia”) figure.

HOMEWORK: Give an example of a “Barbara” syllogism. Using
the same categories, convert it into a “Barbari”. Then explain how
the existential presupposition justifies “Barbari”.

25William of Sherwood, Introduction to Logic, translated with an introduction and notes
by Norman Kretzmann (University of MN Press: 1966), as cited in Sara L. Uckelman,
Syllogism Mnemonics, November 16, 2017
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3.4.3 Encoding Imperfect Syllogism’s Reduction

The name of a valid imperfect syllogism class encodes not only the mood
of its clauses, but also its reduction. The initial letter indicates which perfect
syllogism corresponds to the imperfect one considered. Example: the initial
D in the name of the imperfect syllogism “Disamis” signifies that it corre-
sponds to the perfect syllogism “Darii”. Letters “r”, “t”, “l”, “n”, as well as the
non-initial “b” and “d”, don’t have any mnemonic meaning. Each non-initial
letter S, P, M and C defines one reduction step:

• S: “Simplex conversio”, or simple clause conversion, is the interchange
of the subject and the predicate in the clause denoted by the preceding
vowel. It yields an equivalent proposition for clauses with i or e moods.
Examples: an i-mood clause “some vertebrates are fish” is equivalent
to “some fish are vertebrates”; an e-mood clause “all humans are not
dogs” is equivalent to “all dogs are not humans”. Remark: on the level
of the whole syllogism, this transformation may distort the distribution
of categories among the clauses to the extent that the resulting argu-
ment as a whole would no longer corresponds to any figure, and thus —
while being equivalent to the original syllogism — would no longer be
a syllogism26 itself. If so, the resulting argument must be restored to
the syllogism form by the M transformation considered below, where
we also consider an example of this situation.

• P: “Per accidens conversio”, or partial clause conversion27, is a simple
clause conversion combined with the reversal of the quantifier. Un-
der the existential presupposition, this transformation yields a weaker
statement28 when the original clause had a universal mood29, and a
stronger one — when the original clause had an existential mood30.
This conversion is used only for the syllogisms in bold italic font. Ex-
amples: an a-mood clause “all fish can swim” has a consequence “some
of those who can swim are fish”, as long as we accept that merely men-
tioning fish in the affirmative clause means that fish exist. Similarly, an

26in the sense defined by the grammar on page 41
27in this context, the word “partial” means limitation of the claim expressed by the

original clause
28in the sense described on page 11
29namely mood a or e
30namely mood i or o
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e-mood clause “all dogs are not birds” has a consequence “some birds
are not dogs”. The above remark about the S clause conversion possi-
bly breaking the syllogism grammar applies here as well, although this
happens in only one instance, namely the “Bamalip” syllogism class31.

• M: “Mutatio syllogism”, is the interchange the premises of a syllogism.
Example (“Barbara”): The syllogism “all mammals are vertebrates;
all cats are mammals; thus all cats are vertebrates”, when mutated,
results in “all cats are mammals; all mammals are vertebrates; thus
all cats are vertebrates”. Since the premises are joined by an implicit
conjunction, and conjunction is commutative, the mutated argument
is equivalent to the original one. While trivial from the point of view
of propositinal logic, this transformation may be necessary for restor-
ing grammatical correctness of a syllogism distorted by the S or the
P transformations. Example (“Camestres”): When we apply the
S transformations32 to the minor premise and to the conclusion of
Camestres, its Figure 2 distribution of categories PM, SM, SP turns
into PM, MS, PS. Since, by definition, S is the first, and P is the second
category in the conclusion of a syllogism, we need to reverse the label-
ing of the subject and predicate category, which results in SM, MP, SP
category distribution for the transformed argument. This distribution
does not correspond to any figure and requires the use of the M trans-
formation to get the MP, SM, SP distribution of the figure 1 syllogism
“Celarent”.

• C: “Contra syllogism”33, applies to the whole syllogism like the M
transformation, and is used only for “Baroco” and “Bocardo”, convert-
ing them into an equivalent34 “Barbara” syllogism. This transformation
makes new minor premise by taking the negation of the original con-
clusion, and new conclusion — by taking the negation of the original
minor premise. As it turns out, the negation of a clause amounts to

31For example, all cats are mammals; all mammals are vertebrates; thus some verte-
brates are cats.

32as encoded in the word “Camestres”
33I am not sure it was ever called that; traditionally it was used as an element in a proof

by contradiction. For that reason, this particular validation type was called reductio ad
absurdum, or “reduction by contradiction”.

34The claim that it is in fact an equivalence is the subject of the next homework.
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the simultaneous reversal of its quantifier and copula35. Example: the
negation of “some vertebrates are not dogs” is “all vertebrates are dogs”.

3.4.4 Which Way Should the Reductions Go?

Note that each of the transformations S, P, M and C happens to be
its own opposite, so that when applied repeatedly it toggles between the
original imperfect and corresponding perfect syllogism36. For that reason,
these transformations can in principle be applied in either direction. Which
way should we go?

Theorem (Reduction Implication). Each imperfect syllogism is a valid
logical consequence of the corresponding perfect syllogism. ♢

We will demonstrate it using case-by-case analysis.

Case 1: only S and M transformations are used in the reduction.
In this case we can make an even stronger claim, namely that the two syllo-
gisms are actually equivalent to each other. This claim follows from examin-
ing the effect of these transformations on individual clauses (for S) or their
conjunction that forms the assumption of the syllogism (for M).

HOMEWORK: Verify, using Euler-Venn diagrams, that S trans-
formation of a single clause in i or e mood results in an equivalent
statement.

35This rule will be explained in more detail on page ??.
36In mathematics, examples of operations with this behavior include taking the opposite

(which sends 5 into −5 and vice versa) and taking the reciprocal (which sends 2
3 into 3

2
and vice versa). In (classical) logic this property is examplified by the negation which
takes A into ¬A.
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Case 2: The C transformation yields an equivalent argument.
It turns out that mere propositional analysis is sufficient to demonstrate it37.

HOMEWORK: Demonstrate that the contra syllogism is
equivalent to the original one. (SOLVED)

Solution. In the original syllogism, denote the major premise
as P , minor premise — as p, and conclusion — as C. Then the
original syllogism can be written as

(P ∧ p) ⇒ C

and the contra syllogism — as
(
P ∧ (¬C)

)
⇒ (¬p)

Replacing implications X ⇒ Y with (¬X) ∨ Y , and using the De
Morgan’s law, together with some obvious properties like associa-
tivity and commutativity of disjunction, as well as removal of the
double negation, we get:
(

(P ∧ p) ⇒ C

)
⇔
(
¬(P ∧ p) ∨ C

)
⇔
(

(¬P ) ∨ (¬p) ∨ C

)

for the original syllogism, and
((

P ∧ (¬C)
)
⇒ (¬p)

)
⇔
(
¬
(
P ∧ (¬C)

)
∨ (¬p)

)
⇔

(
(¬P ) ∨ (¬p) ∨ C

)

for the contra syllogism. Since the results of both equivalence chains
are the same, we can conclude that the original and the contra
syllogisms are equivalent.

37but a deeper analysis of the clause is needed to form its negation; the fact that the
traditional approach relied instead on a more circuitus proof by contradiction may be a
reflection of syllogistics preceeding propositional logic in terms of historical development
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Case 3: The imperfect syllogism is a consequence of the corresponding
perfect one when the P transformation is used in the reduction. Propositional
analysis alone turns out to be sufficient in this case as well. Going back to
the table on page 44 we can observe that:

• whenever the P transformation is applied to one of the premises38,
that premise is in the a (i.e. universal affirmative) mood, so that the
transformation of the original clause yields a weaker statement; and

• whenever the P transformation is applied to the conclusion39, that
conclusion is in the i (i.e. existential affirmative) mood, so that the
transformation of the original clause yields a stronger statement.

To sum it up, when the P transformation is applied to an improper syllogism,
it either weakens its assumption, or strengthens its conclusion. The following
two homework problems demonstrate that either way this results in a stronger
perfect syllogism.

HOMEWORK: Verify, using Truth Tables, that weakening the
assumption of an implication results in a stronger implication:

(
A ⇒ a

)
⇒
((

a ⇒ C
)
⇒
(
A ⇒ C

))

HOMEWORK: Verify, using Truth Tables, that strengthening
the conclusion of an implication results in a stronger implication:

(
C ⇒ c

)
⇒
((

A ⇒ C
)
⇒
(
A ⇒ c

))

38as in Felapton, Darapti, and Fesapo
39as in Bamalip
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Traditionally, reductions without C transformations were performed in
the direction reversing the flow of logical implication, namely starting with
the imperfect syllogism in question and going back to the corresponding
perfect syllogism. This process was called40 direct reduction.

Example (direct reduction of “Disamis” syllogism): Consider a “Disamis”:

Some sea creatures are vertebrates.
All sea creatures can swim.
________________________________________________
Some creatures that can swim are vertebrates.

“Disamis” — the first S prescribes simplex conversion of the major premise:

Some vertebrates are sea creatures.
All sea creatures can swim.
________________________________________________
Some creatures that can swim are vertebrates.

“Disamis” — the M prescribes mutatio:

All sea creatures can swim.
Some vertebrates are sea creatures.
________________________________________________
Some creatures that can swim are vertebrates.

“Disamis” — the last S in prescribes simplex conversion of the conclusionm:

All sea creatures can swim.
Some vertebrates are sea creatures.
______________________________
Some vertebrates can swim.

Since these transformations retained equivalence of arguments, and we accept
as self-evident the validity of the last argument — which is none other than
“Darii” 41 — the original “Disamis” syllogism must be valid as well. ♢

40somewhat confusingly, given its progression against the flow of implication
41as the first letter of “Disamis” told us in advance
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The reduction of “Baroco” and “Bocardo” was not based on their equiva-
lence to “Barbara” (which we establised in the homework on page 49, demon-
strating that the C transformation yields an equivalent syllogism in general).
Instead, the process called indirect reduction was performed. Indirect re-
duction is an instance of “reductio ad absurdum”, in other words, proof by
contradiction. Medieval logicians viewed it as a reduction through “Barbara”,
rather then reduction to “Barbara”.

Example (indirect reduction of “Baroco” syllogism): Take an example of the
“Baroco” syllogism:

All dogs are mammals.
Some vertebrates are not mammals.
_____________________________________
Some vertebrates are not dogs.

Assume its conclusion is false, meaning that its negation, “all vertebrates are
dogs”, is true. If so, then the assumptions of the contra syllogism

All dogs are mammals.
All vertebrates are dogs.
_______________________________
All vertebrates are mammals.

are true. But since the contra syllogism is “Barbara” whose validity we ac-
cept, it yields the conclusion “all vertebrates are mammals”. This conclusion
contradicts the minor premise of the original “Baroco” syllogism, “some ver-
tebrates are not mammals”. This contradiction demonstrates that our as-
sumption — that “Baroco” conclusion was false — does not hold. Therefore,
the conclusion of “Baroco” must be true, and the “Baroco” argument as a
whole must be valid. ♢
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3.5 History: Aristotle

Aristotle was a Greek philosopher and the founder of the Peripatetic
School. He is credited with establishing logic as a discipline.

Figure 15: Ἀριστoτέλης [Aristotle] (384–322 BC)

Aristotle may have been the first to recognize that the validity of an argu-
ment may result from its mere form rather than meaning. He systematically
studied syllogisms and discovered some of the ideas of propositional logic
(which historically came after the syllogistic one), like the law of excluded
middle and the law of contradiction. Thus, syllogistic logic is also called
“Aristotelian logic”. Aristotle’s treatise of logic, the Organon [2] survived to
this day. It provided the foundation for logical studies up to 19th century
AD.

The early discovery of this syllogisms by Aristotle and their significance
during the antiquity made syllogistic logic one of the cornerstones of liberal
arts. The idea of liberal arts 42 can be traced to 4th century BC Greece, where
it had at least two distinct roots. The first was the political organization of
a Greek polis, or a city-state. Polices had a form of direct democracy that
placed great emphasis on the ability of an individual to formulate their ideas
and express them in an engaging and convincing way. The second root was

42“artes liberalis”, literally “the skills of the free” in Latin
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the development of mathematics 43 resulting in the idea44 of mathematical
nature of the world.

Roman aristocrat, politician and philosopher Anicius Manlius Severinus
Boethius (c480–c524 AD) was the key figure connecting the ancient Aris-
totelian logic with Christian theology, and preserving the intellectual heritage
of Greek philosophy through the European Dark Ages ensuing from the col-
lapse of the Roman Empire. His translation and commentary of Aristotle’s
works as well as other Greek classics formed the the bulk of Logica Vetus, or
the “old logic” that served as the foundation for the development of liberal
arts in the medieval Europe up to 11th century AD.

(By 9th century AD liberal arts were organized into the Trivium (gram-
mar, dialectic and rhetoric) and the Quadrivium (music, arithmetic, geome-
try and astronomy), with all the seven subjects together comprising philos-
ophy45. In the European Renaissance, the disciplines of the Trivium were
complemented by history, poetry, ethics and Greek, forming the core of the
“Studia humanitatis” or the “humanities” as we know it now.)

Paris philosopher and theologician Peter Abelard (1079–1142 AD), is con-
sidered to be the greatest logician since Antiquity. He developed many sub-
jects introduced by Aristotle, like modal logic, temporal logic and truth-
functional theory of logical gates. Probably he was the first to realize that
Aristotle’s treatment of syllogisms implicitly relied on existential presuppo-
sition.

Introductiones in Logicam, thought to be written around 1240 by William
of Sherwood (1190–1249)46, is the earliest known source of the syllogism
mnemonics.

Rediscovery of some lost works of Aristotle at the dawn of European
Renaissance in 13 century AD brought about the era of Logica Nova, or
“modern logic”. in the form of Scholasticism, a philosophy that emphasized
joining faith and dialectical47 reasoning. The idea of dialectics found its later
development in Natural Deduction of the Proof Theory, with its characteristic
feature of creating the worlds which are permitted to fail in an informative
— and thus productive — way. Scholastics used the so-called “critical organic

43probably also influenced by the Egyptian school of geometry
44expressed explicitly by Pythagoras
45
φιλoσoφία, philosophia, literally “love of wisdom” in Greek.

46this book survives as a single manuscript dating from late 13th century
47literally “through conversation” in Greek, meaning “finding the truth through the

collision of the opposites”
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method” of philosophical analysis. That method was based on Aristotle’s
Organon and placed a big emphasis on the study of syllogisms.

Contrary to the terminology used to describe Euler-Venn diagrams, Got-
tfried Wilhelm Leibniz used them to analyze syllogisms long before Euler
and Venn.

Figure 16: Gottfried Wilhelm Leibnitz (1646–1716)

In his paper “De Formae Logicae Comprobatione per Linearum ductus”,
probably written after 1686, Leibniz proposed the creation of a universal
language that he called characteristica universalis (“universal charac-
teristic” in Latin). That idea inspired Frege to create his Begriffsschrift two
hundred years later.

Another major advance in the study of syllogisms came in the works
of George Boole. Boole’s algebraic treatment of syllogisms in [5] formed
the foundation of the algebraization of logic and defined what we now call
“Boolean algebra”. Boolean algebra studies equations where variables can
assume only two possible values: true and false. They are called boolean
variables.
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Figure 17: George Boole (1815–1864)
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4 Digression: Lambda Calculus

4.1 Lambda Notation

The functional notation “f(x)” may denote the value of the function f
when that function is given the input x. The same notation “f(x)” can also be
used — in a different context — to refer to the function f itself. For example,
it is customary to say “define a function f(x) = x2”. Often the function is
not named, but still referred to as “the function x2” — essentially by what
is an unnamed analog of the functional notation “f(x)”. This possibility of
calling the expression with x a “function” creates the basis for taking “f(x)”
as a notation for a function as well. In this example, we are dealing with the
square function whose graph is the familiar parabola:
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f(x) = x2

x

y

Figure 18: Traditional, but sloppy picture

What happens if x = 2? In this case, the “f(x)” must stand for f(x) = 4
— that’s the meaning of the functional notation! But then for an arbitrary
x, the “f(x)” should denote a number, not a function. So, by using the same
notation to denote two different things, we have cornered ourselves into a
contradiction.

This sloppiness of notation is tolerated — and even preferred — in the
typical mathematical writing. If the intended reader is a human being, as-
sumed to be capable of inferring the precise meaning from the context, and
the work is computational, where formulas are repeated again and again,
perhaps with minor variations, the sloppiness can be tolerated in the name
of making the writing succinct.
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Once people began looking into the foundations of mathematcs, the ut-
most precision became more important than the convenience of carrying long
computations in a short hand. The notation highlighting the disticntion in
meaning — the Lambda notation — was introduced. It later proved im-
mensely useful in programming, where instructions are written (in part) for
a computer incapable — at least initially — of making contextual inferences
about the intended meaning. From that exacting standpoint, “f(x)” can
only denote the output of the function f , and mixing up the function and
the formula that defines it, as in “the function x2”, becomes illegitimate.

While the form of Lambda notation varies, the concept of it is the same:
to make it explicit that the whole function, rather than its single output
value, is being referred to. This concept, regardless of how it is denoted, is
called the Lambda abstraction.

The original notation introduced by Alonso Church was λx.x2. It used
the Greek letter λ, called “Lambda”, giving the name to this whole concept.
Modern mathematical texts more often denote the same by x 7→ x2. In these
notes, we will denote the Lambda abstraction as

(
x : x2

)
.

Whenever possible to do so without confusion, we will omit the outer paren-
theses. Modern computer programming languages usually express this con-
cept with something more verbose:

f unc t i on ( x ) {
re turn x * x ;

}

although the shorter form x => x*x can sometimes be used as well.
One advantage of the more verbose programming notation (and perhaps

the main reason for its use programming) is the possibility of using its slight
modification for giving a name to the function being defined.48 The math-
ematical idea of defining the function f by the equation f(x) = x2 can be
expressed in programming as

f unc t i on f ( x ) {
re turn x * x ;

}

48Lambda calculus does have the expressive power to represent the idea of naming
constant objects. We will discuss it in more details in the section devoted to contexts and
models, which starts on page ??.
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The named function can be applied, whenever we need it, using the notation
f( 5 ). We could use any other name in place of “f”. For example, if we
define

f unc t i on square ( x ) {
re turn x * x ;

}

then the “square” and “f” will be the same. We will borrow this format for
naming things when we introduce our own notation for proofs later in these
notes.

Note also that the above program snippet is equivalent to

square = func t i on ( x ) {
re turn x * x ;

}

With Lambda notation, we can make things precise:
(
x : f(x)

)

describes the whole function that takes any input x into the output f(x),
and f(x) by itself denotes the value of the function f that corresponds to
the input x. In our example, (x : x2) is the whole parabola, and x2 is an
individual number on the y-axis, which is the square of some other number
x on the x-axis:
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x : x2
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Figure 19: Corrected picture
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4.2 Lambda Calculus Grammar

The untyped Lambda calculus deals with expressions constructed accord-
ing to the following grammar rules:

<term> : :=: :=: := <variable> ||| <abstraction> ||| <application>

<abstraction> : :=: :=: := ( <variable> : <term> )

<application> : :=: :=: := <abstraction> ( <term> )

<variable> : :=: :=: := a ||| b ||| c ||| d ||| . . .

I hope you recognize that the abstraction is exactly the Lambda notation,
and the application is the functional notation.
Example (well-formed Lambda term):

(
x : x(y)

)(
(z : z)

)

The first set of big parentheses defines a function
(
x : x(y)

)
which takes

a function and applies it to some fixed y. Note that this is a function on
functions! The second set of big parentheses contains the identity function
(z : z) which spits back its input as its output. So, the whole thing says:
evaluate with the input y the identity function. Thus this expression must
equal to y. ♢

In pure Lambda calculus, all objects are terms, in other words Lambda
expressions themselves. However, in “the real world”, Lambda calculus is
usually used not in its pure form, but as an addition to some other underlying
reality49. In these notes, we allow ourselves to use variables, constants and
externally defined functions which are not Lambda terms. This will permits
us to talk about things like the square function

(
x : x2

)
and numbers, as in

(
x : x2

)
(5).

This last expression says “apply the square function to 5”, so it must equal
25.

49This is very similar to the distinction between axiomatic set theory, where every object
is a set, and the “naive” set theory, which is permitted to consider some external objects,
called urelements, as in {1, 2, 5}.
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4.3 Lambda Calculus Reductions

One Lambda expression can be turned into another — simpler — one. It
can be done in a sequence of steps called lambda-reductions. These Lambda
reductions are purely syntactic rules. The truly remarkable fact about them
is not so much what they are, but their ability to encompass the meaing of the
word “computation”. When Lambda calculus was turned into a programming
language, it was descovered that computation can be viewed as Lambda
reduction of the original Lambda term yielding the result of the computation
as the reduced form of that Lambda term. The precise definition of Lambda
reduction is a bit technical, so instead of diving into those technical details,
we illustrate the Lambda reduction rules with examples.

1. β-reduction. Example:
(
x : x2

)
(y) = y2.

In other words, if our function takes x into x2, then when applied to y it
will take it to y2. This is the precise meaning of the idea of substitution.

2. α-conversion (sometimes called α-equivalence). Example:
(
x : x2

)
=
(
y : y2

)
.

It says that a function is defined by its action on its input, not by how
its input is denoted. This allows us to choose arbitrary (and preferably
meaningful) names for our variables.

3. η-reduction. Example:
(
x : f(x)

)
= f.

This is merely saying that the abstraction defining the function that
takes x into f(x) does not define anything new: it is the same thing as
the function f itself.
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HOMEWORK: Compute
(
y : (x :

√
x)(y)

)
(49).

4.4 Substitution Instance

Definition (of substitution instance): Suppose f =
(
x : f(x)

)
is a

function and c is an object. The expression f(c) is called a substitution
instance of f . ♢ (Using this terminology we can say that Lambda notation
resolves the distinction between the function as a whole and its particular
substitution instance.) The same expression may be a substitution instance
in different ways.
Example (ambiguity of substitution instance): Suppose c is a constant, and
f is a function that depends on two variables. (For example, f can be the
arithmetic operation of addition: f(x, y) = x+y.) Define the following three
functions, each depending on a single variable:

l =
(
x : f(x, c)

)
d =

(
x : f(x, x)

)
r =

(
x : f(c, x)

)
.

The expression f(c, c) is a substitution instance of each one of the three:

f(c, c) = l(c) = d(c) = r(c).

We need to remember about this possibility when talking about substi-
tution instances. ♢

4.5 History: Schönfinkel, Curry, Church, Kleene, Rosser,
McCarthy

Elements of Lambda calculus appeared earlier, but as a complete sys-
tem, it was invented by Alonzo Church [8]. He envisioned it as a framework
for building foundations of mathematics.
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Figure 20: Alonzo Church (1903–1995)

Church was building upon the work of Моисей Эльевич Шейнфинкель
[Moses Schönfinkel] who invented combinatory logic [37] and Haskell Curry,
who developed it [9].

Figure 21: Моисей Эльевич Шейнфинкель [Moses Schönfinkel] (1889–1942)
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Figure 22: Haskell Brooks Curry (1900–1982)

However, their original hope came to a crushing defeat: in 1935 Stephen
Kleene and J. B. Rosser presented the Kleene–Rosser paradox [26] demon-
strating inconsistency of the combinatory logic and Lambda calculus50.

Figure 23: Stephen Cole Kleene (1909–1994)
50perhaps more precisely, they demonstrated inconsistency of modeling logic within com-

binatory and Lambda calculus, rather than inconsistency of those two by themselves.
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Figure 24: John Barkley Rosser, Sr. (1907–1989)

Kleene–Rosser construction was simplified by in 1942 Curry himself [10]
and became known as the Curry’s paradox51.

Lambda calculus was fixed by Church in 1936 by introducing types. That
later development of the theory became known as the simply-typed Lambda
calculus.

51This footnote, describing the Curry’s paradox, is definitely not for the first reading of
this text. The original intended use of combinatory logic and untyped Lambda calculus
was to model predicate logic within these two theories. Those models would give the
obvious — predicate — interpretation to the application terms, so that P (X) would mean
“X has the property P ”. To model implication, a constant Ξ “ur”-term was added, with
Ξ
(
A(B)

)
given the meaning “A ⇒ B”. Within that framework, all logical gates can be

represented by Lambda terms. (In what follows, we just use the logical gate ¬ itself, even
though we really mean the Lambda term representing it.)

However, both combinatory logic and untyped Lambda calculus have a remarkable ob-
ject, called the Y -combinator, which, for every term F , has the property

Y (F ) = F
(
Y (F )

)
.

In a sense, the Y finds the fixed point for any function — this is why it is called the
“fixed point combinator”.

Using the Y -combinator, define the term C = Y (¬) — we denote it C in honor of Curry.
Then the property of the Y -combinator tells us that

¬C = ¬
(
Y (¬)

)
= Y (¬) = C,

which is a contradiction.
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Albeit not in its originally intended role, the early — untyped — version of
Lambda calculus proved to be extremely useful as a foundation of computer
science and a particularly convenient and elegant model of computability.
John McCarthy’s invention [29] of the computer programming language Lisp,
based on Lambda calculus, in the late 1950’s, gave a physical embodiment
to that model. Other programming languages similar in spirit to Lambda
calculus have been created; they fall into what is called the functional
programming paradigm.

Figure 25: John McCarthy (1927–2011)
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5 History Sketch

5.1 Timeline

The content of these notes follows logical progression which is not always
the same as the chronological order of the invention of those ideas. For that
reason, this section will provide a brief timeline of the development of logic,
repeating some of the names and facts mentioned earlier.
᾿Επιµενίδης [Epimenides of Crete], 7th or 6th century BC He is

the earliest semi-mythical character with a reference in a later source. Later
Greek philosophers attributed the liar’s paradox to him. There is no evidence
he actually considered it himself — the paradox is based on a fragment of
a verse attributed to him that hints at a contradiction. Reformulated for
clarity, the paradox goes like this. Epimenides says: “Cretans always lie.”
But he is a Cretan himself. Is his sentence true or false? Three distinct ideas
already emerge here. The first one is the idea of self-reference — the shadow of
the ouroboros. Then, this paradox already centers on the issue of a statement
being true or false, thus anticipating the framework of propositional logic.
Finally, in a somewhat implicit way, this paradox hints at the possibility of
the truth and falsehood being decidable based on the form statement itself
without any externalities brought to bear.
Σωκράτης [Socrates] (c.470–399 BC) He is the first historical figure

whose name is inseparable from the history of logic.
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Figure 26: Σωκράτης [Socrates] (c.470–399 BC)

Athens of the fourth century BC had a form of direct democracy that
placed a big value on the ability of people to formulate and articulate their
ideas, and to use reasoning to convince others of their merit. That envi-
ronment fostered the culture of public argument and necessitated the study
of the general laws of argument we now call logic. Socratic school emerged
against that background. While Socrates did not leave any books of his own,
he founded a school and one of his students, Πλάτων [Plato] (c.429–c.347
BC), recorded some of the Socrates conversations in [31]. Socratic Dialogues
brought rational reasoning in focus and made it a continuing theme in the
development of culture.
Εὐκλείδης [Euclid of Megara] (c.435–c.365 BC) He was another

pupil of Socrates (who reportedly was present at Socrates’ death) Euclid
founded the Megarian school of philosophy. The philosophers of that school
already considered the liar’s paradox, attributing it to Epimenides. Some
of Euclid’s successors developed logic to such an extent that they became a
separate school, that became known as the Dialectical school. The work of
the dialectical school on modal logic, logical conditionals, and propositional
logic played an important role in the development of logic in antiquity.
Ἀριστoτέλης [Aristotle] (384–322 BC) [pg. 53] Aristotle was a

student of Plato who established logic as an independent field. In his work
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Organon [2], he fully developed the syllogistic logic, including the categories,
predicates, and quantifiers.
Εὐκλείδης [Euclid of Alexandria] (c.325–c.265 BC) Euclid was a

Greek mathematician who lived in Ptolemaic Egypt. He used axiomatic
method in his study of geometry. His Στoιχεῖα [Elements] [11], a mathemat-
ical treatise consisting of 13 books, summarized all mathematics known at
that time and became the standard for a rigorous treatment of any subject
for the next millennia.
Χρύσιππoς [Chrysippus of Soli] (c.279–c.204 BC) [pg. 27] Chrysip-

pus was a student of Aristotle who succeeded him as the head of the Peri-
patetic School. He perfected the discipline of propositional logic, but only
fragments of his works survive to this day [7].

Dissolution of the Roman empire resulted in the time of great upheaval
in Europe, and many cultural treasures were lost. Fortunately, many of
the ancient ideas and sources were preserved by the Islamic scholars, and
reemerged in the medieval Europe around the turn of the first millennium.
Medieval scholasticism placed a big emphasis on study of syllogisms.

Gottfried Wilhelm Leibnitz (1646–1716) [pg. 55] Leibniz was a
German philosopher who co-invented, with Isaac Newton, the Mathematical
Analysis. His approach was based on the concept of “monads” that rep-
resented infinitesimals. While intuitive and for this reason favored by
physicists, the concept of infinitesimals looked problematic to generations of
mathematicians that followed Leibnitz. The traditional foundation of anal-
ysis avoided infinitesimals and relied instead on the machinery of inequali-
ties developed by Weierstrass and Cauchy. Only the new logical advances
of Abraham Robinson around 1960 resolved these difficulties and restored
infinitesimals to a fully legitimate status. In logic, he used what we call
“Euler-Venn diagrams” to analyze syllogisms, and put forward, sometime af-
ter 1686, the idea of characteristica universalis. (That idea inspired Frege to
create his Begriffsschrift.)

1847 — George Boole (1815–1864) [pg. 56], a self-taught British
scientist, invents what we now call Boolean algebra and used it in [5] to
study syllogisms with algebraic methods.

1873,74 — Georg Cantor (1845-1918), a German mathematician,
outlined the basics of infinite set theory. His original theory suffered from
the same problem as Begriffsschrift of Frege, invented just a few years later.
However, his theory became “the garden of Eden” for mathematicians, pro-
viding both the framework for building all other mathematical concepts, and
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a challenge and focus of efforts on the foundation of the subject. These efforts
culminated in several axiomatic set theories.

Figure 27: Georg Ferdinand Ludwig Philipp Cantor (1845–1918)

1879 — Friedrich Ludwig Gottlob Frege (1848–1925) [pg. ??], a
German mathematician, invents [13] the “Begriffsschrift” and opens a new
chapter in logic.

1889 — Giuseppe Peano (1858–1932), an Italian mathematician,
publishes a logical definition of natural numbers (Peano axioms of arithmetic)
in his book [30].
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Figure 28: Giuseppe Peano (1858–1932)

1897 — Cesare Burali-Forti (1861–1931) an Italian mathematician,
publishes a result [6] that (unknowingly to author) shows inconsistency of
Cantor’s set theory 52. This result foreshadows the Russel’s paradox that
came 5 years later.

52That result is now known as the Burali-Forti’s paradox. Assuming that the set O of all
ordinal numbers existed, Burali-Forti proved that O must be well-ordered itself, and thus
be its own member: O ∈ O, implying that O is smaller than O — which is a contradiction.
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Figure 29: Cesare Burali-Forti (1861–1931)

1902 — Bertrand Arthur William Russell (1872–1970) [pg. ??],
a British philosopher, sends a letter [36] to Frege which contains what is
now known as the “Russell’s paradox”. Initiates the study of Mathematics
foundations with Principia Mathematica.

David Hilbert (1862–1943) David Hilbert (1862–1943) and Wilhelm
Ackermann (1896–1962). Grundzüge der theoretischen Logik (Principles of
Mathematical Logic). Springer-Verlag efforts in logic [22]

Figure 30: David Hilbert (1862–1943)
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1924 — Моисей Эльевич Шейнфинкель [Moses Schönfinkel]
(1889–1942), [pg. 63] a Soviet mathematician, student of Hilbert and a
member of the Göttingen Logic School, invents combinatory logic as the
framework for foundations of mathematics.

Jan  Lukasiewicz (1878–1956)

Figure 31: Jan Leopold  Lukasiewicz (1878–1956)

One of the founding fathers of the Lwów-Warsaw logic school.
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Figure 32: Kazimierz Twardowski, Jan  Lukasiewicz, Alfred Tarski, and Sta-
nis law Leśniewski - Warsaw University Library

In his 1926 seminars, made an observation that “real” mathematicians
don’t prove their theorems using the logical theories known at the time (in-
cluding those by  Lukasiewicz himself, Frege, and Hilbert). Poses the chal-
lenge to his colleagues to create a system that can be used in the real world.

1927 — Stanis law Jaśkowski (1906–1965) [pg. ??], a Polish logician
(and a student of  Lukasiewicz) who accepted the challenge posed by his
mentor, communicates his first (graphical) form of Natural Deduction at the
First Polish Mathematical Congress [24].

1930 — Jacques Herbrand (1908–1931) [pg. ??], a French mathe-
matician, introduces Herbrand semantics in his thesis.

1930 — Haskell Brooks Curry (1900–1982) [pg. 64] publishes his
paper [9] on combinatory logic.

1931 — Kurt Friedrich Gödel (1906–1978), at the time — an Aus-
trian mathematician, publishes [16] the result now known as the “Gödel in-
completeness theorem”. His result shows the limits of formal methods and
curbs Hilbert’s hopes for axiomatization of mathematics.
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Figure 33: Kurt Friedrich Gödel (1906–1978)

1932 — Alonzo Church (1903–1995) [pg. 63], an American mathe-
matician, invents the untyped lambda calculus [8].

1934 — Gerhard Gentzen (1909–1945) [pg. ??] a German math-
ematician and a student of Hilbert, publishes [14] descriptions of several
versions of Natural Deduction. Gentzen presents three different systems
of deduction, including one for intuitionistic logic. Same year, 1934,
Jaśkowski publishes his description of Natural Deduction, which is an inde-
pendent effort from that of Gentzen [25], (See the comparison below.)

1935 — Stephen Cole Kleene (1909–1994), John Barkley Rosser,
Sr. (1907–1989) [pg. 64], American mathematicians, present [26] what
became to be known as the “Kleene-Rosser paradox”, demonstrating incon-
sistency of logic model within combinatory and (untyped) lambda calculus.

??? — Haskell Brooks Curry (1900–1982) [pg. 64] simplifies Kleene-
Rosser construction and presents the Curry’s paradox showing inconsistency
of any logic model within a system possessing a Y -combinator.

1936 — Alan Mathison Turing (1912–1954) describes the Universal
Turing machine model of computation in [38]. This Universal Turing Machine
provides an alternative model of computation to Church’s lambda calculus,
and while less suitable for human use, is immediately realizable in the physical
world. It becomes the dominant model of computation until higher level
programming languages start to take hold in 1950’s.
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Figure 34: Alan Mathison Turing (1912–1954)

1937 — Willard Van Orman Quine (1908–2000) an American philoso-
pher, publishes [32] the “New Foundations” of the set theory.

1942 — John Barkley Rosser, Sr. (1907–1989) [pg. 65] an Ameri-
can mathematician, finds in [35] that Burali-Forti paradox applies to Quine’s
“New Foundations” necessitating a revision of that set theory (by Quine him-
self).

1952 — Frederic Brenton Fitch (1908–1987) [pg. ??] an American
logician, introduces his Natural Deduction notation in the textbook [12].

1959 — John McCarthy (1927–2011) [pg. 66] an American math-
ematician and computer scientist, invents the computer programming lan-
guage Lisp by modeling it after Church’s lambda calculus.

Abraham Robinson (1918–1974) Using model theory, Robinson was
able to build a solid logical foundation for the classic — but held suspect for
hundreds of years — infinitesimals-based approach to Mathematical Analysis.
[33]
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Figure 35: Abraham Robinson (1918–1974)

1965 — John Alan Robinson (1930–2016) a British-American math-
ematician, discovers the resolution principle and describes it in [34].

Figure 36: John Alan Robinson (1930–2016)

early 1970’s — Robert Anthony Kowalski (1941–) a British-American
mathematician, lays the theoretical foundations for the Prolog language, see
e.g. [27]
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Figure 37: Robert Anthony Kowalski (1941–)
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5.2 Concluding Remarks

There are several different types of contributors and contributions in the
above timeline. People who fostered the creation of new schools (Socrates,
Aristotle, Hilbert,  Lukasiewicz) not only advanced the subject itself, but gave
cultural development an impulse that often persisted for many generations
after them 53. Masters of other fields who did not have logic as the main focus
in all of their endeavors (Euclid of Alexandria, in some ways Leibnitz, Peano,
to some extent Hilbert in his geometry works), — but wanted to be logical in
their studies of other subjects: they moved the stake posts of logic into the
new territory and filled the subject with the vital energy of its applications,
giving the logicians that followed them the new spaces in which the subject
could develop. There are those (Cantor, Frege, Schönfinkel, Hilbert, Curry,
Church, Quine) who eagerly expanded the raw expressive power of logic —
and those (Burali-Forti, Russell, Gödel, Kleene, Rosser) who pruned some
of the wilder branches that ended up connecting truths and falsehoods, thus
creating the short circuits of contradictions. . .

This unending cycle of generation and destruction, looped into a con-
tradiction by its own self-reference, is driven by the conflict between the
expansion of logic in its attempt to encompass the forever growing realms of
human knowledge on the one hand, and taming of its power, forced by the
need to guarantee the separation between the truth and the falsehood — on
the other. While this cycle goes on, we are done — and we came back to our
beginning.

53sometimes — as in the case of Aristotle — even restarting after a long hiatus.
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Figure 38: The Uroboros
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5.3 Appendix: Historical Examples of Different Nota-
tions

Consider a predicate logic argument:


(
∀x :

(
P (x) ⇒ Q(x)

))
∧
(
∃x :

(
¬Q(x)

))

⇒


∃x :

(
¬P (x)

)



This argument can be presented in the style of Gerhard Gentzen which
we used before already:

∀x :

(
P (x) ⇒ Q(x)

)

∃x :

(
¬Q(x)

)

∃x :

(
¬P (x)

)

Gentzen was the one who introduced the notations ∀,∃,∧, and ∨, so it
is not surprising that this form of writing looks very modern. The same
argument would look completely differently in the amusingly idiosyncratic
style of Friedrich Ludwig Gottlob Frege:

 x P (x)
 x Q(x)

 x Q(x)

P (x)

However, you may notice something familiar even here: the negation ¬
and the “turnstile” ⊢ that has been used ever since for an assertion of truth
of some statement are the two symbols introduced by Frege which are still
in use today.
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Assuming now that we want to prove this argument, how would a natural
deduction proof look in different notation systems?

1. ∀x :
(
P (x) ⇒ Q(x)

)
hypothesis

2. ∃x :
(
¬Q(x)

)
hypothesis

3. a ¬Q(a) sub-proof hypothesis

4. P (a) ⇒ Q(a) ∀x elimination from 1 (taking x = a)

5. P (a) sub-sub-proof hypothesis

6. Q(a) ⇒ elimination from 4, 5

7. F contradiction from 3, 6

8. ¬P (a) reduction ad absurdum from 5–7

9. ∃x :
(
¬P (x)

)
∃ introduction from 8

10. ∃x :
(
¬P (x)

)
∃ elimination from 2, 3–9

Figure 39: A Proof in the Style of Stanis law Jaśkowski

1. ∀x :
(
P(x) ⇒ Q(x)

)

2. ∃x :
(
¬Q(x)

)

3. a ¬Q(a)

4. P(a) ⇒ Q(a) ∀Elim: 1

5. P(a)

6. P(a) ⇒ Q(a) Reit: 4
7. P(a) Reit: 5
8. Q(a) ⇒Elim: 6, 7
9. ¬Q(a) Reit: 3
9. ⊥ ⊥ Intro: 8, 9

10. ¬P(a) ¬ Intro: 5–9

11. ∃x :
(
¬P(x)

)
∃ Intro: 10

12. ∃x :
(
¬P(x)

)
∃Elim: 2, 3–11

Figure 40: A Proof in the Style of Frederic Brenton Fitch
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1
Hyp¬Q(a)

∀x :
(
P (x) ⇒ Q(x)

) 2
Hyp

a : term
∀Elim

P (a) ⇒ Q(a)

3
Hyp

P (a) ⇒Elim
Q(a) ¬Elim

F
Contr (3)¬P (a) ∃ Intro

∃x :
(
¬P (x)

)
∃x :

(
¬Q(x)

)

∃ Elim (1, 2)

∃x :
(
¬P (x)

)

Figure 41: A Proof in the Style of Gerhard Gentzen
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imp l i c a t i on example ( p r ed i c a t e P, Q ) [
a s s e r t i o n impl =

imp l i c a t i on ( ob j e c t x ) [ P( x ) ] { Q( x ) } ;
a s s e r t i o n conc_neg = ( e x i s t s x : !Q( x ) ) ;

] {
imp l i c a t i on th i s_ imp l i e s_ex i s t ence ( ob j e c t a ) [

a s s e r t i o n this_conc_neg = ( !Q( a ) )
] {
a s s e r t i o n this_impl =

deduce ( imp l i c a t i on ( ) [ P( a ) ] { Q( a ) } ) [
impl ( a )

] ;
a s s e r t i o n th i sass_impl_fa l sehood =

deduce ( imp l i c a t i on ( ) [ Q( a ) ] { F } ) [
negel im ( Q( a ) ) [ this_conc_neg ]

]
imp l i c a t i on absurdum ( ) [

a s s e r t i o n this_prem = ( P( a ) )
] {
a s s e r t i o n th i s c onc = deduce ( Q( a ) ) [

th i s imp l ( ) [ this_prem ]
] ;
a s s e r t i o n f a l s ehood = deduce ( F ) [

th i sass_impl_fa l sehood ( ) [ th i s conc ]
]

}
a s s e r t i o n th i s_as s_fa l s e = deduce ( !P( a ) ) [

neg in t ro ( P( a ) ) [ absurdum ]
]
deduce ( e x i s t s x : !P( x ) ) [

e x i n t r o ( a ; x : !P(x ) ) [ th i s_as s_fa l s e ]
]

}
deduce ( e x i s t s x : !P( x ) ) [

exe l im ( x : !P(x ) ; e x i s t s x : !P(x ) ) [
th i s_ imp l i e s_ex i s t ence ;
conc_neg ;

]
] ;

}
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But wait. . . The main strength of our notation was its ability to define
new arguments that can be plugged into the old ones. So, in a way, the
proof on the previous page is an unfair comparison that does not play to the
strength of what we used in these notes. Given that we have already proven
modus tollens MT on page ??, we can prove this argument faster:

imp l i c a t i on example ( p r ed i c a t e P, Q ) [
a s s e r t i o n impl =

imp l i c a t i on ( ob j e c t x ) [ P( x ) ] { Q( x ) } ;
a s s e r t i o n conc_neg = ( e x i s t s x : ( !Q( x ) ) ) ;

] {
imp l i c a t i on th i s_ imp l i e s_ex i s t ence ( ob j e c t a ) [

a s s e r t i o n this_conc_neg = ( !Q( a ) )
] {
a s s e r t i o n this_impl =

deduce ( imp l i c a t i on ( ) [ P( a ) ] { Q( a ) } ) [
impl ( a )

] ;
a s s e r t i o n th i s_as s_fa l s e = deduce ( !P( a ) ) [

MT( P( a ) , Q( a ) ) [ this_impl ; this_conc_neg ; ]
]
deduce ( e x i s t s x : !P( x ) ) [

e x i n t r o ( a ; x : ! P(x ) ) [ th i s_as s_fa l s e ]
]

}
deduce ( e x i s t s x : !P( x ) ) [

exe l im ( x : ! P(x ) ; e x i s t s x : ! P(x ) ) [
th i s_ imp l i e s_ex i s t ence ;
conc_neg ;

]
] ;

}
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non-terminal, 18

Ontology, 5

parse tree, 18
predicate, 38, 39
premise, 8
production rule, 17
production rules, 17
proof, 43
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