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1 Preliminaries
Remark (about formatting of these notes): The end of an item started with
the bold face font is denoted by ♢

Remark (about mathematical terms): Mathematical terms will appear in
this font when they are used for the first time in these notes. If the term
in question is not immediately defined, it means that I assume you know its
meaning. If this is not the case, please ask for an explanation. ♢

Remark (about emphasis): I will use this font to emphasize something. ♢

Any corrections and suggestions on how to improve these notes are very
welcome.

Remark (about mathematical notation): Mathematics itself is the most rig-
orous of all fields of study, but the mathematical notation is rather sloppy.
There is a simple explanation for that. Doing mathematics often involved
writing down long computations. To focus on the important parts of those
computations, all inessential details were usually suppressed in the nota-
tion. It is assumed that the intelligent reader of mathematics will be able
to recover the implicit and the suppressed details based on their overall un-
derstanding of the subject from the context of the explicit part. However,
when the context is to narrow to be implied, or is shifting in the course of
considerations, traditional mathematical notation becomes ambiguous and
may lead to errors in reasoning. Programming languages, on the other hand,
are not optimized for brevity of handwritten expression, like mathematics
was. They are meant to be precise, so that a non-intelligent computer could
unambigously get their meaning. This is the reason programming languages
and their notations may prove to be useful when we want to be precise. I
will try to introduce new ideas in the most precise way possible, and then,
once the concept is clarified with precise notation, I will show you the usual
way it is denoted in mathematics. ♢

Definition (of lambda abstraction): Suppose X and Y are sets, x ∈ X,
f(x) is some expression that contains x, and ∀x ∈ X : f(x) ∈ Y . Then
λx ∈ X.f(x) ∈ Y denotes the function with domain X, range Y and graph{(

x, f(x)
)
: x ∈ X

}
. Often, when the sets X and Y can be implied from
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the context 1, they are ommitted and the function is denoted as λx.f(x). ♢

Example (functions of one real argument):

• the square function is λx.x2,

• the sin function is the same as λx. sin(x),

• f = λx.x2 + 3x+ 2 is usually written as f(x) = x2 + 3x+ 2.

♢

Example (lambda notation making derivatives precise): When we are writ-

ing a derivative as (x2+3x)′, we really mean
(
λx.(x2 + 3x)

)′
. Understood in

its literal sense, the derivative (x2+3x)′ would amount to that of a constant
and result in zero. ♢

2 Theoretical basis of integration.

2.1 (Differential) 1-forms.

In Calculus I, we mostly considered functions of one real argument x. The
domain and range of those functions were usually the set of all real numbers
R, or some subsets of that set. In Calculus II we shift our attention on
1-forms , whether we acknowledge that or not. I hope you appreciate the
clarity this concept brings to the whole subject, albeit at a slight expense in
the abstraction level.

Definition (of linear space and vectors): Given without proper foun-
dation in linear algebra , this definition is somewhat “crippled”. Linear spaces
are, roughly speaking, sets of objects that can be added to each other, like
v+w, and multiplied by a number C, as in C ·v, in a way that obeys the usual
properties of addition and multiplication, like distributivity, commutativity,
associativity etc. For example, we must have that C · (v+w) = C · v+C ·w.
The objects of linear spaces are called vectors For our immediate needs, it
is enough to substitue “linear space” with “set of real numbers” and “vector”
with “real number”. ♢

1The original lambda-calculus is type-free, so all inputs and all outputs are from the
same set.
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Definition (of linearity of a function): Suppose f is a function, and
the domain and range of f are linear spaces. Then the function f is called
linear if and only if:

• ∀v, w ∈ Dom f : f(v + w) = f(v) + f(w)

• ∀C ∈ R,∀v ∈ Dom f : f(C · v) = C · f(v)

When the domain and the range of f are simply R, f being linear amounts
to

f(x) = m · x+ b

with zero b. ♢

HOMEWORK: Prove the last statement.

Definition (of a 1-form): A 1-form is a function of two vector arguments,
linear with respect to one of them. ♢

Example (1-forms): Suppose x,∆x ∈ R. Then the following functions
(written using the λ-notation) are all 1-forms, linear with respect to the
argument ∆x:

• λ(x,∆x). x ·∆x,

• λ(x,∆x). x2 ·∆x,

• λ(x,∆x). sin(x) ·∆x.

♢

Remark (about vector notation for the argument of a 1-form): Given a 1-
form λ(x,∆x). ω(x,∆x), think of x as a point on the real line and ∆x as a
vector starting at the point x and pointing right when ∆x is positive and left
when ∆x is negative. This allows us to think of a 1-form as a function of one
fixed vector argument λ

−→
∆x. ω(

−→
∆x)

x x+∆x
−→
∆x
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Adopting this geometric idea, we can give meaning to the expression
ω(

−→
AB), where A and B are some points on the real line, i.e. numbers:

ω(
−→
AB) = ω(A,B − A)

This geometric point of view is very useful in the Calculus III course
where we break the constraints of one dimensional line and consider things
in multidimensional spaces. ♢

2.2 Differential of a function.

Given a function f that has linear spaces as its domain and range we define
a 1-form related to that function. The process of obtaining such a 1-form is
called differentiation and the resulting 1-form is called the differential of the
function f and denoted df .

The following definition of differential works for functions defined on real
number line R. This case will satisfy our needs in this course and therefore
this is the only definition that you really need to know for now.

Definition (of differential of a single real argument function):
Suppose f is a function defined on an open interval of the real number line
R and that interval contains x. Furthermore, assume that the range of f is a
linear space, for example R itself. Then define the differential of the function
as:

df(x,∆x) = f ′(x) ·∆x,

where
f ′(x) = lim

h→0

f(x+ h)− f(x)

h

is the derivative of f at the point x.
Thus, differential may or may not exist, depending on whether or not the

derivative exists. If the derivative (and thus the differential) of the function
exists on a given interval of real number line, the function is called differen-
tiable on that interval ♢

Definition (of differential of a function of a vector argument): Sup-
pose x is a vector, f is a function defined in a neighborhood of x, ∆x is an
arbitrary vector in the same linear space as x.
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Then define df(x,∆x) as a 1-form, linear with respect to ∆x, such that

lim
∆x→0

f(x+∆x)− f(x)− df(x,∆x)

|∆x|
= 0,

where |∆x| denotes the length of the vector ∆x. If such a function exists, it
is necessarily unique — hence we may say “the” differential. ♢

Remark (about differential as linear approximation): In practical terms, the
definitions of differential mean that when ∆x is close to zero, we have the
approximate equality

f(x+∆x)− f(x) ≈ df(x,∆x),

or, in the geometric notation,

f(B)− f(A) ≈ df(
−→
AB).

The precision of this approximation increases as ∆x becomes closer to zero.
♢

Remark (about geometric meaning of differential): Make the sketch of the
graph of the function f in the usual (x, y)-coordinate system. Introduce a new
(∆x,∆y)-coordinate system by shifting the origin of the (x, y)-coordinate
system to the point (x, f(x)) in the old (x, y)-coordinate system. Then the
graph of the differential df as a function of ∆x with fixed x in the (∆x,∆y)-
coordinate system is the tangent to the graph of the function f . In particular,
function being differentiable means geometrically that its graph has tangent,
i.e. is smooth. ♢

1 2 3 4 5 6
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Remark (about short hand notation for differentials): Sometimes we want to
use a short hand notation for a function, without writing down its arguments
explicitly:

√
instead of

√
x, sin instead of sin(x) and the like. Since a

differential of a function has two variables, it might be confusing to drop
both. It is customary to drop reference to ∆x and write df(x) instead of
df(x,∆x).

So, for example, when one works with the function f(x) = sin(x), one
might write d sin(x) instead of d sin(x,∆x). However, if we try to do the
same to the right side of

d sin(x,∆x) = cos(x) ·∆x,

we get complete nonsense:

d sin(x) = cos(x)

We have a 1-form on the left hand side being equal to a usual function on
the right hand side!

To deal with this situation, we will write dx in the place of ∆x:

d sin(x) = cos(x) dx

It makes sense because, as we have seen above, if f(x) = x, then

df(x,∆x) = ∆x

Therefore if we plug in ∆x into d sin(x) = cos(x) dx, we get

d sin(x,∆x) = cos(x) dx(∆x) = cos(x)∆x

— just what we want. ♢

2.3 Indefinite integral of a 1-form.

Definition (of indefinite integral of a 1-form): Suppose ω(x,∆x) is
a 1-form, defined for any x in the open interval (a, b) and for any real ∆x.
By definition,

∫
ω is the set of all functions F , defined and continuous on the
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open interval (a, b), such that dF (x, ∆x) = ω(x, ∆x) for all but finitely
many x ∈ (a, b) and all ∆x ∈ R:∫

ω = {
F (x) :

F is continuous on the interval (a, b)
∧

∀but finitely manyx ∈ (a, b), ∀∆x ∈ R : dF (x, ∆x) = ω(x, ∆x)
}

♢

Definition (of antiderivative of a function): Suppose f is a function,
defined on an interval of the real line. By definition, F is the antiderivative
of f , if and only if

1. F is a continuous function on that interval;

2. for all but finitely many x in that interval, F ′(x) = f(x).

In other words, F is an antiderivative of f if and only if F is an element of
the set

∫
f(x) dx. ♢

Suppose we are given a 1-form ω. We may ask the following questions:

1. Find at least one continuous function F , that has ω as its differential:
ω(x) = dF (x).

2. Find all possible continuous functions F , that have ω as their differen-
tial, i.e. find

∫
ω.

It looks like the second question is harder to answer than the first one.
However, it turns out that these questions have exactly the same level of
difficulty. If you can find one function F , such that ω = dF (answer ques-
tion 1), then you can find all of them (answer question 2) by taking all the
functions of the form F (x) + C, where C is an arbitrary constant 2).

2We assume that the 1-form ω is defined on an interval of the real line. Sometimes
we will deal with 1-forms (example: dz

z ) that are defined on a disjoint union of two or
more intervals. For those 1-forms we must deal with each connected piece of the domain
separately from others — as if we had several 1-forms, completely unrelated to each other.
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HOMEWORK: Prove the preceding assertion: If F and G are
functions defined and continuous on an interval of the real line, such
that df(x, ∆x) = dg(x, ∆x) for all but finitely many x in that
interval and for every ∆x, then there exists a constant C, such that
for every x in the interval, we have that F (x) = G(x) + C.

We can write it symbolically as
∫
ω = F (x) + C. It really means that∫

ω = {F (x) + C : C ∈ R} 3). The bottom line is: to recognize a 1-form ω
as a differential of a function F is almost the same as to integrate ω.
Example (indefinite integration): Suppose we have the 1-form ω(x) =
cos(x) dx. We can find a function, for example sin(x), such that d sin(x) =
cos(x) dx. Therefore

∫
cos(x) dx = sin(x) + C. ♢

2.4 Definite integral of a 1-form over an interval.

Definition (of definite integral of a 1-form): Suppose we are given
an interval [a, b] and a 1-form ω(x, ∆x), defined for every x in that interval.

Pick any integer n and divide the interval [a, b] into n small intervals
[Ai, Ai+1], i = 0, . . . , n− 1, where A0 = a and An = b. Form the sum

n∑
i=0

ω(
−−−−→
AiAi+1).

(It is called the Riemann sum of the 1-form ω on the interval [a, b], corre-
sponding to the subdivision A0, A1, . . . , An.)

By definition, the definite integral of a 1-form is the limit of its Riemann
sums, achieved by taking finer and finer subdivisions of the interval of inte-
gration: ∫

[a, b]

ω = lim
max

i
|AiAi+1| → 0

n∑
i=0

ω(
−−−−→
AiAi+1).

♢
3If the domain of F consists of several disjoint intervals, then the constants should be

chosen independently for those intervals.
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If the interval [a, b] and the 1-form ω are fixed, then the definite integral∫
[a, b]

ω (when it exists) is just a real number. If the integral exists, the 1-form
in question is called integrable .
Theorem (a sufficient condition of integrability of a 1-form). If the
function f(x) is continuous on a closed interval of the real line, then the
1-form f(x) dx is integrable over that interval. ♢

2.5 The connection between
the definite and indefinite integrals of a given 1-
form.

It seems at first that the indefinite integral and definite integral have abso-
lutely nothing in common. Indeed, given a 1-form ω, the indefinite integral
of ω is a set of functions, whereas the definite integral of ω (over a fixed
interval of integration) is just a number.

The connection is given by the following theorem.
Theorem (the Newton-Leibnitz formula). Suppose [a, b] is an interval
of the real line and ω is a 1-form, integrable on the interval [a, b]. Then∫
[a, b]

ω = F (x)
∣∣∣
[a, b]

= F (b) − F (a), where F is any function from the in-

definite integral of ω. In particular, if F is a differentiable function, then∫
[a, b]

dF (x) = F (x)
∣∣∣
[a, b]

= F (b)− F (a). ♢

This theorem allows us to compute the definite integral, provided we
know how to find the indefinite integral. Example (using Newton-Leibnitz
formula to compute definite integral):∫

[0,π
2
]

cos(x) dx =

= since cos(x) dx = d sin(x) =

=

∫
[0,π

2
]

d sin(x) =

= using the Newton-Leibnitz formula =

= sin(
π

2
)− sin(0) = 1− 0 = 1.
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♢

3 Techniques of integration.

3.1 Obvious integrals, obtained by
using the table of the derivatives.

The following three statements express exactly the same relationship between
the functions f(x) and F (x):

• f(x) = F ′(x), i.e. the function f(x) is the derivative of the function
F (x);

• f(x) dx = dF (x), i.e. the differential of the function F (x) is the
1-form f(x) dx;

•
∫
f(x) dx = F (x) + C 4).

Therefore every derivative that we know gives us an integral. It is im-
portant to remember the following derivatives (or integrals). (Okay, I will
not torture you for not knowing the hyperbolic functions by heart.) For
convenience, I will group them.

Power
F (x) f(x)
xn n xn−1

Exponential
F (x) f(x)
ax ax ln a

Logarithmic
F (x) f(x)
loga(x)

1
x ln a

4Again, assuming F and f are defined on one interval. If the domain of F and f
consists of several disjoint intervals, use independent C for different intervals.
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Trigonometric
F (x) f(x)
sin(x) cos(x)
cos(x) − sin(x)
tan(x) sec2(x) = 1

cos2(x)

cot(x) − csc2(x) = − 1
sin2(x)

sec(x) sec(x) tan(x)
csc(x) − csc(x) cot(x)

Inverse trigonometric
F (x) f(x)

arcsin(x) 1√
1−x2

arccos(x) − 1√
1−x2

arctan(x) 1
1+x2

arccot(x) − 1
1+x2

arcsec(x) 1
|x|

√
x2−1

arccsc(x) − 1
|x|

√
x2−1

Hyperbolic
F (x) f(x)
sinh(x) cosh(x)
cosh(x) sinh(x)
tanh(x) 1− tanh2(x) = sech2(x)
coth(x) 1− coth2(x) = − csch2(x)
sech(x) − tanh(x) sech(x)
csch(x) − coth(x) csch(x)

Inverse hyperbolic
F (x) f(x)

arcsinh(x) 1√
x2+1

arccosh(x) − 1√
x2−1

arctanh(x) 1
1−x2

arccoth(x) − 1
1−x2

arcsech(x) 1
x
√
1−x2

arccsch(x) − 1
|x|

√
1+x2

(By the way, what is the inverse of the power function?)
Example (the integrals “in” the above table):∫

1√
x2 + 1

dx = arcsinh(x) + C∫
n xn−1 dx = xn + C∫
ax ln(a) dx = ax + C∫
1

x ln a
dx = loga(x) + C

♢
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3.2 The basic properties of integrals:
Linearity, Additivity, Integration by parts and Sub-
stitutions.

All of the fundamental properties of integrals (except additivity) come di-
rectly from properties of differentials.

The following comes from linearity of differentials:
Theorem (linearity of integral).

1. If C is a constant and ω is an integrable 1-form, then
∫
C ·ω = C ·

∫
ω.

2. If ω and τ are integrable 1-forms, then
∫ (

ω + τ
)
=

( ∫
ω
)
+
( ∫

τ
)
.

The above is also true for definite integrals taken over the same fixed interval.
♢

Example (using the linearity of integration):

1. ∫
ax dx =

= Multiply by 1 = 1
ln(a)

· ln(a) to get the table integral of ax ln(a). =

=

∫
ax

1

ln(a)
· ln(a) dx =

= Use the linearity of integration: =

=
1

ln(a)

∫
ax ln(a) dx =

= Use the table integral =

=
ax

ln(a)
+ C.

2. ∫
xm dx =
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= Take n to be m+ 1. Then m = n− 1. =

=

∫
xn−1 dx =

= If n ̸= 0, multiply by 1
n
· n to get the table integral of n xn−1 =

=

∫
1

n
· n · xn−1 dx =

= Using the linearity of integration: =

=
1

n
·
∫

n · xn−1 dx =

= Using the table: =

=
1

n
·
(
xn + C

)
=

= Going back to the variable m =

=
xm+1

m+ 1
+ C.

The above integration works 5) for all m except m = −1. To find the
integral of 1

x
, take a closer look at the table integral∫

1

x ln a
dx = loga(x) + C.

5If m is negative, then the 1-form xm dx is not defined for x = 0. Therefore we can be
sure that xm dx is integrable on an interval [a, b] (and use the Newton-Leibnitz formula
to find that integral) only if the interval under consideration does not contain 0. To be
completely precise, in the case of m < −1 we should write∫

xm dx =

{
xm+1

m+ 1
+ C(x) : C(x) is a constant for x > 0 and x < 0

}
,

in other words the integral consists of all the functions of the form

f(x) =

{
xm+1

m+1 + C1, if x > 0
xm+1

m+1 + C2, if x < 0
,

where C1 and C2 are arbitrary (and independent from each other!) constants.
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When a = e it becomes ∫
1

x
dx = ln(x) + C.

(This makes sense only for positive x.)

♢

Theorem (additivity of definite integral).

1. If ω is a 1-form and a, b are real numbers, then
∫
[a, b]

ω = −
∫
[b,a]

ω.

2. If ω is a 1-form and a, b, c are real numbers, then∫
[a, c]

ω =
( ∫

[a, b]
ω
)
+
( ∫

[b, c]
ω
)
.

♢

The following comes from the differential of the product formula:
Theorem (integration by parts). If f and g are differentiable functions,
then ∫

f(x) dg(x) = f(x)g(x)−
∫

g(x) df(x)

The above is also true for definite integrals taken over the same fixed interval:∫
[a, b]

f(x) dg(x) = f(x)g(x)
∣∣∣
[a, b]

−
∫
[a, b]

g(x) df(x) =

f(b)g(b)− f(a)g(a)−
∫
[a, b]

g(x) df(x)

♢

The following comes from the chain rule for differentials:
Theorem (substitution). If f is a continuous function and g is a differ-
entiable function, then∫

f
(
g(x)

)
dg(x) =

(∫
f(u) du

)∣∣∣
u=g(x)

.

If in addition a, b are real numbers, then∫
[a, b]

f
(
g(x)

)
dg(x) =

∫
[g(a), g(b)]

f(u) du.
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♢

Remark (about two uses of substitution): The above theorem may be used
in two different ways.

1. We are given the integral
∫
f
(
g(x)

)
dg(x) =

∫
f
(
g(x)

)
g′(x) dx. We

go to the integral
∫
f(u) du. After computing

∫
f(u) du, we substi-

tute u = g(x) into the answer. This is called the direct substitution .
Example (using direct substitution):∫

sin(lnx)

x
dx =

= group the denominator and the dx =∫
sin(lnx)

dx

x
=

= since dx
x

= d lnx = ∫
sin(lnx) d lnx =

= using g(x) = lnx = ∫
sin(u) du =

= using the table of integrals =

− cos(u) + C =

= substituting u = g(x) =

− cos(lnx) + C.

♢
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2. We are given the integral
∫
f(u) du and we are introducing a sub-

stitution u = g(x), that takes us to the integral
∫
f
(
g(x)

)
g′(x) dx.

After computing
∫
f
(
g(x)

)
g′(x) dx, we have to invert the function g

and substitute x = g−1(u) into the answer. This is called the inverse
substitution . Example (using inverse substitution):∫

sin(lnx)

x
dx

= introduce the substitution x = et =∫
sin(ln et)

et
det

= find det = ∫
sin(ln et)

et
et dt

= simplify = ∫
sin(t) dt

= use the table of integrals =

− cos(t) + C

= substitute the inverse of x = et, which is t = lnx =

− cos(lnx) + C.

♢

♢

Example (using substitution to compute “the other half of”
∫

1
x

dx): For
positive x, we found that ∫

1

x
dx = ln(x) + C.

To find the integral of 1
x

for negative x, we can use the technique of substi-
tution and the fact that the function λ(x ∈ R− 0) : 1

x
is odd .
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HOMEWORK: Prove that

1. one of the antiderivatives of an even function is an odd func-
tion;

2. every antiderivative of an odd function is an even function.

Assume that x < 0. Than we have:∫
1

x
dx =

∫
− 1

−x
dx =

∫
1

−x
d(−x)

= Using the direct substitution u = −x and noticing that u > 0: =∫
1

u
du = lnu+ C

= Going back to the variable x: =

ln(−x) + C.

♢

Remark (about general formula for
∫

1
x

dx): The two formulas:∫
1

x
dx =

{
ln(x) + C : if the domain of 1

x
is assumed to be (0,+∞)

ln(−x) + C : if the domain of 1
x

is assumed to be (−∞, 0)

may be combined into one formula∫
1

x
dx = ln |x|+ C

that works for any non-zero x 6). ♢

Remark (about linear adjustment of substitution): The (direct) substitu-
tion technique can be immediately applied when we have an integral of the

6With the understanding that the additive constant C should be chosen independently
for x > 0 and x < 0.
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form
∫
f
(
g(x)

)
dg(x) =

∫
f
(
g(x)

)
g′(x) dx. We can extend this area of

applicability to the case of
∫
f
(
g(x)

)
h(x) dx, where h differs from g′ by a

multiplicative constant. The reason is quite simple: linearity of both inte-
gral and differential allows us to multiply the function under the integral by
whatever constant, as long as we compensate for it. ♢

Example (linear adjustment of substitution):∫
sin(3x− 5) dx =

= we could immediately apply substitution u = 3x− 5 if we had
∫
sin(3x− 5) · 3 dx

=
1

3

∫
sin(3x− 5) d(3x− 5) =

= use the substitution u = 3x− 5 =

1

3

∫
sin(u) du = −cos(u)

3
+ C

= go back to x =

−cos(3x− 5)

3
+ C.

♢

3.3 Specific substitution for specific situations.

Unlike the process of differentiation, integration is often a highly non-obvious
task. Because of that, we have to consider different classes of functions and
develop appropriate techniques for those classes.

However, all of the following rules of integration are, to some degree,
tentative. By no means will they give the best way of integration in every
case they are used.

Note that by now, in addition to the table functions (i.e. those that
appear as f(x) in the table on the page 11), we can integrate the following:

1. Any power of x.
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HOMEWORK: Prove that the formula
∫
xn dx = xn+1

n+1
+ C

works for any real number n ̸= −1, for instance n = π,
√
2 etc.

2. Any polynomial in x. (Use the linearity of integral to reduce the prob-
lem to that of integrating a power of x.)

3. Any exponent in x, like eax+b. (Use the linear substitution u = ax+ b
to get a table function.)

4. Any polynomial in sines and cosines, multiplied by any exponent as in
the preceding case. (Use the exponential formula for sines and cosines
to make this into a sum of exponent and then the linearity of integral.)
This is very hard in practice, therefore we will do something different,
when we can.

The list of topics presented here is by no means exhaustive.

3.3.1 Rational functions.

Definition (of rational functions): Rational function is a function of the
form

p(x)

q(x)
,

where p(x) and q(x) are polynomial functions and q(x) is not identically zero.
♢

The process of integrating such functions is straightforward, but some-
times very tedious. Suppose we are given a rational function

p(x)

q(x)
.

It can be integrated by doing the following steps:

1. Perform long division of p(x) by q(x) to obtain the expression

p(x)

q(x)
= f(x) +

r(x)

q(x)
,
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where f(x) is the polynomial resulting in such division, r(x) is the
remainder of such division, and deg

(
r(x)

)
< deg

(
q(x)

)
.

2. Factor completely the polynomial q(x):

q(x) = p1
d1(x) · . . . · pndn(x),

where the pi(x) are distinct irreducible polynomials. (This is potentially
the hardest step in the whole process. We can not effectively factor a
polynomial of degree higher than 4.)

Remark (about irreducible polynomials): If we consider polynomials
with complex coefficients, then the only irreducible polynomials are
those of degree 1, i.e. the polynomials ax+ b with a ̸= 0.

If we consider polynomials with real coefficients only, the irreducible
polynomials are

(a) polynomials of degree 1;

(b) polynomials of degree 2 that have negative discriminant 7.

♢

3. Find the partial fraction decomposition of r(x)
q(x)

. It is the sum of the
form

r(x)

q(x)
=

∑
i=1...n

∑
j=1...di

fi,j(x)

pij(x)
,

where fi,j(x) are polynomials having deg
(
fi,j(x)

)
< deg

(
pi(x)

)
.

4. At this point we have to integrate the sum of following types of func-
tions.

• A polynomial f(x). Can be done (see above).

• A fraction of the type c
(ax+b)n

, where a, b, c are real and n is a
positive integer constants. Using the substitution u = ax + b we
will get an integral of power of u.

7Recall that the discriminant of the quadratic polynomial ax2+bx+c is the expression
b2 − 4ac.

21



• A fraction of the type ax+b
(Ax2+Bx+C)n

, where a, b, A,B,C are real
and n is a positive integer constants. Complete the square to
get the fraction in the form ax+b

(x2+C)n
(possibly with different a and

b). Integrate the fraction ax
(x2+C)n

using substitution u = x2 + C.
We still have to find the integral of b

(x2+C)n
. Using linearity of

integral, it can be made into hn(x) =
1

(x2+1)n
. One possible way

to integrate it is induction on n, using integration by parts. Here
is how it goes. First,∫

1

x2 + 1
dx = arctanx+ C.

Second, ∫
1

(x2 + 1)n
dx =

= replace 1 with x2 + 1− x2 and use the linearity of integral =∫ ( x2 + 1

(x2 + 1)n
− x2

(x2 + 1)n

)
dx =∫

1

(x2 + 1)n−1
dx− 1

2

∫
x · d(x2 + 1)

(x2 + 1)n
=

= prepare the second integral for integration by parts =∫
1

(x2 + 1)n−1
dx+

1

2(n− 1)

∫
x · d

(
1

(x2 + 1)n−1

)
=

= integrate the second integral by parts =∫
1

(x2 + 1)n−1
dx+

x

2(n− 1)
·
(

1

(x2 + 1)n−1

)
− 1

2(n− 1)

∫ (
1

(x2 + 1)n−1

)
dx =

= combine the like terms (find the lowest common denominator etc.)
=

x

2(n− 1)(x2 + 1)n−1
+

2n− 3

2(n− 1)

∫
1

(x2 + 1)n−1
dx.

This gives an inductive formula for the integral∫
1

(x2 + 1)n
dx.

Another way is to use the substitution x = C tan(t).
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3.3.2 Trigonometric functions.

There are several cases that we can handle.

1. ∫
sinm(x) cosn(x) dx,

where m and n are integer numbers (including the case m = 0 or n = 0).
Consider subcases:

(a) One of the numbers m, n is odd. Use the corresponding function
as the direct substitution.

(b) Both numbers are even non-negative. Use the double angle for-
mulas to lower the degrees:

sin2(x) =
1− cos(2x)

2
,

cos2(x) =
1 + cos(2x)

2
.

2. ∫
sin(mx) cos(nx) dx,∫
cos(mx) cos(nx) dx,∫
sin(mx) sin(nx) dx,

where m and n are natural numbers

3. General rational function of trigonometric functions (all trigonometric
functions are applied to just x, unlike the preceding case). Use the
substitution u = tan(x

2
). Then

dx =
2 du

1 + u2
,

sin(x) =
2u

1 + u2
,

cos(x) =
1− u2

1 + u2
.
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3.3.3 Linear function under a radical.

If the integral contains m
√
ax+ b, where m is integer, a and b are real con-

stants, then the substitution u = m
√
ax+ b will rationalize the radical.

3.3.4 Square root of a quadratic function.

1. Complete the square.

2. Use a linear substitution to get a radical in standard form.

3. Find your radical in the standard form in the “
√

” column of the
following table (assuming a > 0).

4. Use one of the corresponding substitutions on the right to get rid of
the radical.

5. Use the corresponding inverse function to get back from t to x.

See the remarks after the table for the explanation of the ±.

Square root of a quadratic function√
x = t ∈

√
= dx =√

a2 − x2 a sin(t) [−π
2
, π
2
] a cos(t) a cos(t) dt

a cos(t) [0, π] a sin(t) −a sin(t) dt√
a2 + x2 a tan(t) (−π

2
, π
2
) a sec(t) a sec2(t)

a sinh(t) (−∞,∞) a cosh(t) a cosh(t)√
x2 − a2 ± a sec(t) [0, π

2
) a tan(t) ± a sec(t) tan(t) dt

± a cosh(t) [0,∞) a sinh(t) ± a sinh(t) dt

The case of
√

=
√
x2 − a2 deserves a special consideration. The graph

of the function
√
x2 − a2 consists of two disjoint halves of hyperbolas. The

domain (i.e. possible values of x) is the disjoint union of two intervals

(−∞, −a] ∪ [a, +∞).

Each of those intervals should be considered separately. This explains the
need for ± in front of the two substitutions for that radical.
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